Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{1\times 5-i\times 5}
Multiply 1-i times 5.
\frac{1}{5-5i}
Do the multiplications in 1\times 5-i\times 5.
\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+5i.
\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(5+5i\right)}{50}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5+5i}{50}
Multiply 1 and 5+5i to get 5+5i.
\frac{1}{10}+\frac{1}{10}i
Divide 5+5i by 50 to get \frac{1}{10}+\frac{1}{10}i.
Re(\frac{1}{1\times 5-i\times 5})
Multiply 1-i times 5.
Re(\frac{1}{5-5i})
Do the multiplications in 1\times 5-i\times 5.
Re(\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)})
Multiply both numerator and denominator of \frac{1}{5-5i} by the complex conjugate of the denominator, 5+5i.
Re(\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(5+5i\right)}{50})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5+5i}{50})
Multiply 1 and 5+5i to get 5+5i.
Re(\frac{1}{10}+\frac{1}{10}i)
Divide 5+5i by 50 to get \frac{1}{10}+\frac{1}{10}i.
\frac{1}{10}
The real part of \frac{1}{10}+\frac{1}{10}i is \frac{1}{10}.