Evaluate
-\frac{\sqrt{3}}{3}+5\sqrt{5}+9\approx 19.602989618
Share
Copied to clipboard
\frac{1}{\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{1}{5-4\sqrt{5}+4}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
The square of \sqrt{5} is 5.
\frac{1}{9-4\sqrt{5}}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Add 5 and 4 to get 9.
\frac{9+4\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Rationalize the denominator of \frac{1}{9-4\sqrt{5}} by multiplying numerator and denominator by 9+4\sqrt{5}.
\frac{9+4\sqrt{5}}{9^{2}-\left(-4\sqrt{5}\right)^{2}}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Consider \left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9+4\sqrt{5}}{81-\left(-4\sqrt{5}\right)^{2}}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Calculate 9 to the power of 2 and get 81.
\frac{9+4\sqrt{5}}{81-\left(-4\right)^{2}\left(\sqrt{5}\right)^{2}}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Expand \left(-4\sqrt{5}\right)^{2}.
\frac{9+4\sqrt{5}}{81-16\left(\sqrt{5}\right)^{2}}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Calculate -4 to the power of 2 and get 16.
\frac{9+4\sqrt{5}}{81-16\times 5}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
The square of \sqrt{5} is 5.
\frac{9+4\sqrt{5}}{81-80}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Multiply 16 and 5 to get 80.
\frac{9+4\sqrt{5}}{1}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Subtract 80 from 81 to get 1.
9+4\sqrt{5}-\frac{1}{\sqrt{5-2}}+\sqrt{5}
Anything divided by one gives itself.
9+4\sqrt{5}-\frac{1}{\sqrt{3}}+\sqrt{5}
Subtract 2 from 5 to get 3.
9+4\sqrt{5}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{5}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
9+4\sqrt{5}-\frac{\sqrt{3}}{3}+\sqrt{5}
The square of \sqrt{3} is 3.
9+5\sqrt{5}-\frac{\sqrt{3}}{3}
Combine 4\sqrt{5} and \sqrt{5} to get 5\sqrt{5}.
\frac{3\left(9+5\sqrt{5}\right)}{3}-\frac{\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9+5\sqrt{5} times \frac{3}{3}.
\frac{3\left(9+5\sqrt{5}\right)-\sqrt{3}}{3}
Since \frac{3\left(9+5\sqrt{5}\right)}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{27+15\sqrt{5}-\sqrt{3}}{3}
Do the multiplications in 3\left(9+5\sqrt{5}\right)-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}