Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{1}{\sqrt{3}-\sqrt{5}}
Rationalize the denominator of \frac{1}{\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{5}.
\frac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{1}{\sqrt{3}-\sqrt{5}}
Consider \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{1}{\sqrt{3}-\sqrt{5}}
Square \sqrt{3}. Square \sqrt{5}.
\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{1}{\sqrt{3}-\sqrt{5}}
Subtract 5 from 3 to get -2.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{1}{\sqrt{3}-\sqrt{5}}
Multiply both numerator and denominator by -1.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{\sqrt{3}+\sqrt{5}}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}
Rationalize the denominator of \frac{1}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{\sqrt{3}+\sqrt{5}}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{\sqrt{3}+\sqrt{5}}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{\sqrt{3}+\sqrt{5}}{-2}
Subtract 5 from 3 to get -2.
\frac{-\sqrt{3}+\sqrt{5}}{2}+\frac{-\sqrt{3}-\sqrt{5}}{2}
Multiply both numerator and denominator by -1.
\frac{-\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}}{2}
Since \frac{-\sqrt{3}+\sqrt{5}}{2} and \frac{-\sqrt{3}-\sqrt{5}}{2} have the same denominator, add them by adding their numerators.
\frac{-2\sqrt{3}}{2}
Do the calculations in -\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}.
-\sqrt{3}
Cancel out 2 and 2.