Evaluate
\frac{\sqrt{502}+5\sqrt{2}}{904}\approx 0.032606664
Share
Copied to clipboard
\frac{1}{2\sqrt{502}-\sqrt{200}}
Factor 2008=2^{2}\times 502. Rewrite the square root of the product \sqrt{2^{2}\times 502} as the product of square roots \sqrt{2^{2}}\sqrt{502}. Take the square root of 2^{2}.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
Factor 200=10^{2}\times 2. Rewrite the square root of the product \sqrt{10^{2}\times 2} as the product of square roots \sqrt{10^{2}}\sqrt{2}. Take the square root of 10^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
Rationalize the denominator of \frac{1}{2\sqrt{502}-10\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{502}+10\sqrt{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
The square of \sqrt{502} is 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
Multiply 4 and 502 to get 2008.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-10\sqrt{2}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
Calculate -10 to the power of 2 and get 100.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
Multiply 100 and 2 to get 200.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
Subtract 200 from 2008 to get 1808.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}