\frac { 1 } { \lfloor 6 } + \frac { 1 } { L } = \frac { x } { 8 }
Solve for L
L=-\frac{24}{4-3x}
x\neq \frac{4}{3}
Solve for x
x=\frac{4}{3}+\frac{8}{L}
L\neq 0
Graph
Share
Copied to clipboard
\frac{4}{3}L+8=Lx
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8L, the least common multiple of L,8.
\frac{4}{3}L+8-Lx=0
Subtract Lx from both sides.
\frac{4}{3}L-Lx=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{4}{3}-x\right)L=-8
Combine all terms containing L.
\frac{\left(\frac{4}{3}-x\right)L}{\frac{4}{3}-x}=-\frac{8}{\frac{4}{3}-x}
Divide both sides by \frac{4}{3}-x.
L=-\frac{8}{\frac{4}{3}-x}
Dividing by \frac{4}{3}-x undoes the multiplication by \frac{4}{3}-x.
L=-\frac{24}{4-3x}
Divide -8 by \frac{4}{3}-x.
L=-\frac{24}{4-3x}\text{, }L\neq 0
Variable L cannot be equal to 0.
\frac{4}{3}L+8=Lx
Multiply both sides of the equation by 8L, the least common multiple of L,8.
Lx=\frac{4}{3}L+8
Swap sides so that all variable terms are on the left hand side.
Lx=\frac{4L}{3}+8
The equation is in standard form.
\frac{Lx}{L}=\frac{\frac{4L}{3}+8}{L}
Divide both sides by L.
x=\frac{\frac{4L}{3}+8}{L}
Dividing by L undoes the multiplication by L.
x=\frac{4}{3}+\frac{8}{L}
Divide 8+\frac{4L}{3} by L.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}