Solve for α
\alpha \neq -1
\beta \neq -1
Solve for β
\beta \neq -1
\alpha \neq -1
Share
Copied to clipboard
\beta +1+\alpha +1=\beta +1+\alpha +1
Variable \alpha cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(\alpha +1\right)\left(\beta +1\right), the least common multiple of \alpha +1,\beta +1,\left(\alpha +1\right)\left(\beta +1\right).
\beta +2+\alpha =\beta +1+\alpha +1
Add 1 and 1 to get 2.
\beta +2+\alpha =\beta +2+\alpha
Add 1 and 1 to get 2.
\beta +2+\alpha -\alpha =\beta +2
Subtract \alpha from both sides.
\beta +2=\beta +2
Combine \alpha and -\alpha to get 0.
\text{true}
Reorder the terms.
\alpha \in \mathrm{R}
This is true for any \alpha .
\alpha \in \mathrm{R}\setminus -1
Variable \alpha cannot be equal to -1.
\beta +1+\alpha +1=\beta +1+\alpha +1
Variable \beta cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(\alpha +1\right)\left(\beta +1\right), the least common multiple of \alpha +1,\beta +1,\left(\alpha +1\right)\left(\beta +1\right).
\beta +2+\alpha =\beta +1+\alpha +1
Add 1 and 1 to get 2.
\beta +2+\alpha =\beta +2+\alpha
Add 1 and 1 to get 2.
\beta +2+\alpha -\beta =2+\alpha
Subtract \beta from both sides.
2+\alpha =2+\alpha
Combine \beta and -\beta to get 0.
\text{true}
Reorder the terms.
\beta \in \mathrm{R}
This is true for any \beta .
\beta \in \mathrm{R}\setminus -1
Variable \beta cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}