Evaluate
\frac{21}{5}=4.2
Factor
\frac{3 \cdot 7}{5} = 4\frac{1}{5} = 4.2
Share
Copied to clipboard
\frac{\frac{7+10}{7}+13^{2}-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Multiply 1 and 7 to get 7.
\frac{\frac{17}{7}+13^{2}-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Add 7 and 10 to get 17.
\frac{\frac{17}{7}+169-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Calculate 13 to the power of 2 and get 169.
\frac{\frac{17}{7}+\frac{1183}{7}-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Convert 169 to fraction \frac{1183}{7}.
\frac{\frac{17+1183}{7}-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Since \frac{17}{7} and \frac{1183}{7} have the same denominator, add them by adding their numerators.
\frac{\frac{1200}{7}-\frac{756}{49}}{2\times \frac{10}{7}\times 13}
Add 17 and 1183 to get 1200.
\frac{\frac{1200}{7}-\frac{108}{7}}{2\times \frac{10}{7}\times 13}
Reduce the fraction \frac{756}{49} to lowest terms by extracting and canceling out 7.
\frac{\frac{1200-108}{7}}{2\times \frac{10}{7}\times 13}
Since \frac{1200}{7} and \frac{108}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1092}{7}}{2\times \frac{10}{7}\times 13}
Subtract 108 from 1200 to get 1092.
\frac{156}{2\times \frac{10}{7}\times 13}
Divide 1092 by 7 to get 156.
\frac{156}{\frac{2\times 10}{7}\times 13}
Express 2\times \frac{10}{7} as a single fraction.
\frac{156}{\frac{20}{7}\times 13}
Multiply 2 and 10 to get 20.
\frac{156}{\frac{20\times 13}{7}}
Express \frac{20}{7}\times 13 as a single fraction.
\frac{156}{\frac{260}{7}}
Multiply 20 and 13 to get 260.
156\times \frac{7}{260}
Divide 156 by \frac{260}{7} by multiplying 156 by the reciprocal of \frac{260}{7}.
\frac{156\times 7}{260}
Express 156\times \frac{7}{260} as a single fraction.
\frac{1092}{260}
Multiply 156 and 7 to get 1092.
\frac{21}{5}
Reduce the fraction \frac{1092}{260} to lowest terms by extracting and canceling out 52.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}