Verify
false
Share
Copied to clipboard
\frac{\left(1\times 4+1\right)\times 2}{4\left(1\times 2+1\right)}=\frac{\frac{1}{4}}{\frac{1}{2}}
Divide \frac{1\times 4+1}{4} by \frac{1\times 2+1}{2} by multiplying \frac{1\times 4+1}{4} by the reciprocal of \frac{1\times 2+1}{2}.
\frac{1+4}{2\left(1+2\right)}=\frac{\frac{1}{4}}{\frac{1}{2}}
Cancel out 2 in both numerator and denominator.
\frac{5}{2\left(1+2\right)}=\frac{\frac{1}{4}}{\frac{1}{2}}
Add 1 and 4 to get 5.
\frac{5}{2\times 3}=\frac{\frac{1}{4}}{\frac{1}{2}}
Add 1 and 2 to get 3.
\frac{5}{6}=\frac{\frac{1}{4}}{\frac{1}{2}}
Multiply 2 and 3 to get 6.
\frac{5}{6}=\frac{1}{4}\times 2
Divide \frac{1}{4} by \frac{1}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{2}.
\frac{5}{6}=\frac{2}{4}
Multiply \frac{1}{4} and 2 to get \frac{2}{4}.
\frac{5}{6}=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{6}=\frac{3}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{5}{6} and \frac{1}{2} to fractions with denominator 6.
\text{false}
Compare \frac{5}{6} and \frac{3}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}