Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(z^{2}+1\right)\left(1+z+z^{2}\right)-\left(z+1\right)\left(z^{2}-z+1\right)=\left(z^{2}+1\right)^{2}
Variable z cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(z+1\right)\left(z^{2}+1\right)^{2}, the least common multiple of z^{3}+z^{2}+z+1,z^{4}+2z^{2}+1,z+1.
2z^{2}+z^{3}+z^{4}+1+z-\left(z+1\right)\left(z^{2}-z+1\right)=\left(z^{2}+1\right)^{2}
Use the distributive property to multiply z^{2}+1 by 1+z+z^{2} and combine like terms.
2z^{2}+z^{3}+z^{4}+1+z-\left(z^{3}+1\right)=\left(z^{2}+1\right)^{2}
Use the distributive property to multiply z+1 by z^{2}-z+1 and combine like terms.
2z^{2}+z^{3}+z^{4}+1+z-z^{3}-1=\left(z^{2}+1\right)^{2}
To find the opposite of z^{3}+1, find the opposite of each term.
2z^{2}+z^{4}+1+z-1=\left(z^{2}+1\right)^{2}
Combine z^{3} and -z^{3} to get 0.
2z^{2}+z^{4}+z=\left(z^{2}+1\right)^{2}
Subtract 1 from 1 to get 0.
2z^{2}+z^{4}+z=\left(z^{2}\right)^{2}+2z^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z^{2}+1\right)^{2}.
2z^{2}+z^{4}+z=z^{4}+2z^{2}+1
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2z^{2}+z^{4}+z-z^{4}=2z^{2}+1
Subtract z^{4} from both sides.
2z^{2}+z=2z^{2}+1
Combine z^{4} and -z^{4} to get 0.
2z^{2}+z-2z^{2}=1
Subtract 2z^{2} from both sides.
z=1
Combine 2z^{2} and -2z^{2} to get 0.