Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1+x}{x^{2}+x-2}}{\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{3}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x+2}{x+2}.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{\left(x-2\right)\left(x+2\right)+3}{x+2}}
Since \frac{\left(x-2\right)\left(x+2\right)}{x+2} and \frac{3}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{x^{2}+2x-2x-4+3}{x+2}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+3.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{x^{2}-1}{x+2}}
Combine like terms in x^{2}+2x-2x-4+3.
\frac{\left(1+x\right)\left(x+2\right)}{\left(x^{2}+x-2\right)\left(x^{2}-1\right)}
Divide \frac{1+x}{x^{2}+x-2} by \frac{x^{2}-1}{x+2} by multiplying \frac{1+x}{x^{2}+x-2} by the reciprocal of \frac{x^{2}-1}{x+2}.
\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{\left(x-1\right)^{2}}
Cancel out \left(x+1\right)\left(x+2\right) in both numerator and denominator.
\frac{1}{x^{2}-2x+1}
Expand the expression.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{3}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-2 times \frac{x+2}{x+2}.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{\left(x-2\right)\left(x+2\right)+3}{x+2}}
Since \frac{\left(x-2\right)\left(x+2\right)}{x+2} and \frac{3}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{x^{2}+2x-2x-4+3}{x+2}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+3.
\frac{\frac{1+x}{x^{2}+x-2}}{\frac{x^{2}-1}{x+2}}
Combine like terms in x^{2}+2x-2x-4+3.
\frac{\left(1+x\right)\left(x+2\right)}{\left(x^{2}+x-2\right)\left(x^{2}-1\right)}
Divide \frac{1+x}{x^{2}+x-2} by \frac{x^{2}-1}{x+2} by multiplying \frac{1+x}{x^{2}+x-2} by the reciprocal of \frac{x^{2}-1}{x+2}.
\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{\left(x-1\right)^{2}}
Cancel out \left(x+1\right)\left(x+2\right) in both numerator and denominator.
\frac{1}{x^{2}-2x+1}
Expand the expression.