Solve for z
z=i
Share
Copied to clipboard
1+i=\left(1-i\right)z
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by z.
\left(1-i\right)z=1+i
Swap sides so that all variable terms are on the left hand side.
z=\frac{1+i}{1-i}
Divide both sides by 1-i.
z=\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
z=\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1\times 1+i+i+i^{2}}{2}
Multiply complex numbers 1+i and 1+i like you multiply binomials.
z=\frac{1\times 1+i+i-1}{2}
By definition, i^{2} is -1.
z=\frac{1+i+i-1}{2}
Do the multiplications in 1\times 1+i+i-1.
z=\frac{1-1+\left(1+1\right)i}{2}
Combine the real and imaginary parts in 1+i+i-1.
z=\frac{2i}{2}
Do the additions in 1-1+\left(1+1\right)i.
z=i
Divide 2i by 2 to get i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}