Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

1+i=\left(1-i\right)z
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by z.
\left(1-i\right)z=1+i
Swap sides so that all variable terms are on the left hand side.
z=\frac{1+i}{1-i}
Divide both sides by 1-i.
z=\frac{\left(1+i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{1+i}{1-i} by the complex conjugate of the denominator, 1+i.
z=\frac{\left(1+i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{1\times 1+i+i+i^{2}}{2}
Multiply complex numbers 1+i and 1+i like you multiply binomials.
z=\frac{1\times 1+i+i-1}{2}
By definition, i^{2} is -1.
z=\frac{1+i+i-1}{2}
Do the multiplications in 1\times 1+i+i-1.
z=\frac{1-1+\left(1+1\right)i}{2}
Combine the real and imaginary parts in 1+i+i-1.
z=\frac{2i}{2}
Do the additions in 1-1+\left(1+1\right)i.
z=i
Divide 2i by 2 to get i.