Solve for c
c=-\frac{d\left(ay+1\right)}{ay-1}
\left(y=0\text{ or }a\neq \frac{1}{y}\right)\text{ and }d\neq 0
Solve for a
\left\{\begin{matrix}a=-\frac{d-c}{y\left(c+d\right)}\text{, }&d\neq 0\text{ and }y\neq 0\text{ and }\left(c=d\text{ or }|c|\neq |d|\right)\\a\in \mathrm{R}\text{, }&d=c\text{ and }y=0\text{ and }c\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
-d\left(1+ay\right)=\left(ay-1\right)c
Multiply both sides of the equation by d\left(ay-1\right), the least common multiple of 1-ay,d.
-d-day=\left(ay-1\right)c
Use the distributive property to multiply -d by 1+ay.
-d-day=ayc-c
Use the distributive property to multiply ay-1 by c.
ayc-c=-d-day
Swap sides so that all variable terms are on the left hand side.
\left(ay-1\right)c=-d-day
Combine all terms containing c.
\left(ay-1\right)c=-ady-d
The equation is in standard form.
\frac{\left(ay-1\right)c}{ay-1}=-\frac{d\left(ay+1\right)}{ay-1}
Divide both sides by -1+ay.
c=-\frac{d\left(ay+1\right)}{ay-1}
Dividing by -1+ay undoes the multiplication by -1+ay.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}