Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1+a}{a^{2}+a-2}}{\frac{\left(a-2\right)\left(a+2\right)}{a+2}+\frac{3}{a+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2 times \frac{a+2}{a+2}.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{\left(a-2\right)\left(a+2\right)+3}{a+2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{a+2} and \frac{3}{a+2} have the same denominator, add them by adding their numerators.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{a^{2}+2a-2a-4+3}{a+2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)+3.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{a^{2}-1}{a+2}}
Combine like terms in a^{2}+2a-2a-4+3.
\frac{\left(1+a\right)\left(a+2\right)}{\left(a^{2}+a-2\right)\left(a^{2}-1\right)}
Divide \frac{1+a}{a^{2}+a-2} by \frac{a^{2}-1}{a+2} by multiplying \frac{1+a}{a^{2}+a-2} by the reciprocal of \frac{a^{2}-1}{a+2}.
\frac{\left(a+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+2\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{\left(a-1\right)^{2}}
Cancel out \left(a+1\right)\left(a+2\right) in both numerator and denominator.
\frac{1}{a^{2}-2a+1}
Expand the expression.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{\left(a-2\right)\left(a+2\right)}{a+2}+\frac{3}{a+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2 times \frac{a+2}{a+2}.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{\left(a-2\right)\left(a+2\right)+3}{a+2}}
Since \frac{\left(a-2\right)\left(a+2\right)}{a+2} and \frac{3}{a+2} have the same denominator, add them by adding their numerators.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{a^{2}+2a-2a-4+3}{a+2}}
Do the multiplications in \left(a-2\right)\left(a+2\right)+3.
\frac{\frac{1+a}{a^{2}+a-2}}{\frac{a^{2}-1}{a+2}}
Combine like terms in a^{2}+2a-2a-4+3.
\frac{\left(1+a\right)\left(a+2\right)}{\left(a^{2}+a-2\right)\left(a^{2}-1\right)}
Divide \frac{1+a}{a^{2}+a-2} by \frac{a^{2}-1}{a+2} by multiplying \frac{1+a}{a^{2}+a-2} by the reciprocal of \frac{a^{2}-1}{a+2}.
\frac{\left(a+1\right)\left(a+2\right)}{\left(a+1\right)\left(a+2\right)\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{\left(a-1\right)^{2}}
Cancel out \left(a+1\right)\left(a+2\right) in both numerator and denominator.
\frac{1}{a^{2}-2a+1}
Expand the expression.