Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+9i}{3+4i}
Calculate 2+i to the power of 2 and get 3+4i.
\frac{\left(1+9i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-4i.
\frac{39+23i}{25}
Do the multiplications in \frac{\left(1+9i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}.
\frac{39}{25}+\frac{23}{25}i
Divide 39+23i by 25 to get \frac{39}{25}+\frac{23}{25}i.
Re(\frac{1+9i}{3+4i})
Calculate 2+i to the power of 2 and get 3+4i.
Re(\frac{\left(1+9i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{1+9i}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\frac{39+23i}{25})
Do the multiplications in \frac{\left(1+9i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}.
Re(\frac{39}{25}+\frac{23}{25}i)
Divide 39+23i by 25 to get \frac{39}{25}+\frac{23}{25}i.
\frac{39}{25}
The real part of \frac{39}{25}+\frac{23}{25}i is \frac{39}{25}.