Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}{\left(1-6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}
Rationalize the denominator of \frac{1+6\sqrt{6}}{1-6\sqrt{6}} by multiplying numerator and denominator by 1+6\sqrt{6}.
\frac{\left(1+6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Consider \left(1-6\sqrt{6}\right)\left(1+6\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+6\sqrt{6}\right)^{2}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Multiply 1+6\sqrt{6} and 1+6\sqrt{6} to get \left(1+6\sqrt{6}\right)^{2}.
\frac{1+12\sqrt{6}+36\left(\sqrt{6}\right)^{2}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+6\sqrt{6}\right)^{2}.
\frac{1+12\sqrt{6}+36\times 6}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
The square of \sqrt{6} is 6.
\frac{1+12\sqrt{6}+216}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Multiply 36 and 6 to get 216.
\frac{217+12\sqrt{6}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Add 1 and 216 to get 217.
\frac{217+12\sqrt{6}}{1-\left(-6\sqrt{6}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{217+12\sqrt{6}}{1-\left(-6\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-6\sqrt{6}\right)^{2}.
\frac{217+12\sqrt{6}}{1-36\left(\sqrt{6}\right)^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{217+12\sqrt{6}}{1-36\times 6}
The square of \sqrt{6} is 6.
\frac{217+12\sqrt{6}}{1-216}
Multiply 36 and 6 to get 216.
\frac{217+12\sqrt{6}}{-215}
Subtract 216 from 1 to get -215.
\frac{-217-12\sqrt{6}}{215}
Multiply both numerator and denominator by -1.