Evaluate
\frac{-12\sqrt{6}-217}{215}\approx -1.146018032
Share
Copied to clipboard
\frac{\left(1+6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}{\left(1-6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}
Rationalize the denominator of \frac{1+6\sqrt{6}}{1-6\sqrt{6}} by multiplying numerator and denominator by 1+6\sqrt{6}.
\frac{\left(1+6\sqrt{6}\right)\left(1+6\sqrt{6}\right)}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Consider \left(1-6\sqrt{6}\right)\left(1+6\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+6\sqrt{6}\right)^{2}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Multiply 1+6\sqrt{6} and 1+6\sqrt{6} to get \left(1+6\sqrt{6}\right)^{2}.
\frac{1+12\sqrt{6}+36\left(\sqrt{6}\right)^{2}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+6\sqrt{6}\right)^{2}.
\frac{1+12\sqrt{6}+36\times 6}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
The square of \sqrt{6} is 6.
\frac{1+12\sqrt{6}+216}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Multiply 36 and 6 to get 216.
\frac{217+12\sqrt{6}}{1^{2}-\left(-6\sqrt{6}\right)^{2}}
Add 1 and 216 to get 217.
\frac{217+12\sqrt{6}}{1-\left(-6\sqrt{6}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{217+12\sqrt{6}}{1-\left(-6\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-6\sqrt{6}\right)^{2}.
\frac{217+12\sqrt{6}}{1-36\left(\sqrt{6}\right)^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{217+12\sqrt{6}}{1-36\times 6}
The square of \sqrt{6} is 6.
\frac{217+12\sqrt{6}}{1-216}
Multiply 36 and 6 to get 216.
\frac{217+12\sqrt{6}}{-215}
Subtract 216 from 1 to get -215.
\frac{-217-12\sqrt{6}}{215}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}