Evaluate
\frac{5}{8}+\frac{3}{8}i=0.625+0.375i
Real Part
\frac{5}{8} = 0.625
Share
Copied to clipboard
\frac{\left(1+4i\right)\left(4-4i\right)}{\left(4+4i\right)\left(4-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-4i.
\frac{\left(1+4i\right)\left(4-4i\right)}{4^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+4i\right)\left(4-4i\right)}{32}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)i^{2}}{32}
Multiply complex numbers 1+4i and 4-4i like you multiply binomials.
\frac{1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)\left(-1\right)}{32}
By definition, i^{2} is -1.
\frac{4-4i+16i+16}{32}
Do the multiplications in 1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)\left(-1\right).
\frac{4+16+\left(-4+16\right)i}{32}
Combine the real and imaginary parts in 4-4i+16i+16.
\frac{20+12i}{32}
Do the additions in 4+16+\left(-4+16\right)i.
\frac{5}{8}+\frac{3}{8}i
Divide 20+12i by 32 to get \frac{5}{8}+\frac{3}{8}i.
Re(\frac{\left(1+4i\right)\left(4-4i\right)}{\left(4+4i\right)\left(4-4i\right)})
Multiply both numerator and denominator of \frac{1+4i}{4+4i} by the complex conjugate of the denominator, 4-4i.
Re(\frac{\left(1+4i\right)\left(4-4i\right)}{4^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+4i\right)\left(4-4i\right)}{32})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)i^{2}}{32})
Multiply complex numbers 1+4i and 4-4i like you multiply binomials.
Re(\frac{1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)\left(-1\right)}{32})
By definition, i^{2} is -1.
Re(\frac{4-4i+16i+16}{32})
Do the multiplications in 1\times 4+1\times \left(-4i\right)+4i\times 4+4\left(-4\right)\left(-1\right).
Re(\frac{4+16+\left(-4+16\right)i}{32})
Combine the real and imaginary parts in 4-4i+16i+16.
Re(\frac{20+12i}{32})
Do the additions in 4+16+\left(-4+16\right)i.
Re(\frac{5}{8}+\frac{3}{8}i)
Divide 20+12i by 32 to get \frac{5}{8}+\frac{3}{8}i.
\frac{5}{8}
The real part of \frac{5}{8}+\frac{3}{8}i is \frac{5}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}