Solve for s
s=-\frac{1}{5t-8}
t\neq \frac{8}{5}\text{ and }t\neq 2
Solve for t
t=\frac{8}{5}-\frac{1}{5s}
s\neq -\frac{1}{2}\text{ and }s\neq 0
Share
Copied to clipboard
1+2s=5s\left(-t+2\right)
Multiply both sides of the equation by -t+2.
1+2s=-5st+10s
Use the distributive property to multiply 5s by -t+2.
1+2s+5st=10s
Add 5st to both sides.
1+2s+5st-10s=0
Subtract 10s from both sides.
1-8s+5st=0
Combine 2s and -10s to get -8s.
-8s+5st=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(-8+5t\right)s=-1
Combine all terms containing s.
\left(5t-8\right)s=-1
The equation is in standard form.
\frac{\left(5t-8\right)s}{5t-8}=-\frac{1}{5t-8}
Divide both sides by 5t-8.
s=-\frac{1}{5t-8}
Dividing by 5t-8 undoes the multiplication by 5t-8.
1+2s=5s\left(-t+2\right)
Variable t cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by -t+2.
1+2s=-5st+10s
Use the distributive property to multiply 5s by -t+2.
-5st+10s=1+2s
Swap sides so that all variable terms are on the left hand side.
-5st=1+2s-10s
Subtract 10s from both sides.
-5st=1-8s
Combine 2s and -10s to get -8s.
\left(-5s\right)t=1-8s
The equation is in standard form.
\frac{\left(-5s\right)t}{-5s}=\frac{1-8s}{-5s}
Divide both sides by -5s.
t=\frac{1-8s}{-5s}
Dividing by -5s undoes the multiplication by -5s.
t=\frac{8}{5}-\frac{1}{5s}
Divide 1-8s by -5s.
t=\frac{8}{5}-\frac{1}{5s}\text{, }t\neq 2
Variable t cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}