Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{1-i}+2
Add 1 and 1 to get 2.
\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+2
Multiply both numerator and denominator of \frac{2}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{2\left(1+i\right)}{1^{2}-i^{2}}+2
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(1+i\right)}{2}+2
By definition, i^{2} is -1. Calculate the denominator.
\frac{2\times 1+2i}{2}+2
Multiply 2 times 1+i.
\frac{2+2i}{2}+2
Do the multiplications in 2\times 1+2i.
1+i+2
Divide 2+2i by 2 to get 1+i.
1+2+i
Combine the real and imaginary parts in numbers 1+i and 2.
3+i
Add 1 to 2.
Re(\frac{2}{1-i}+2)
Add 1 and 1 to get 2.
Re(\frac{2\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+2)
Multiply both numerator and denominator of \frac{2}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{2\left(1+i\right)}{1^{2}-i^{2}}+2)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(1+i\right)}{2}+2)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2\times 1+2i}{2}+2)
Multiply 2 times 1+i.
Re(\frac{2+2i}{2}+2)
Do the multiplications in 2\times 1+2i.
Re(1+i+2)
Divide 2+2i by 2 to get 1+i.
Re(1+2+i)
Combine the real and imaginary parts in numbers 1+i and 2.
Re(3+i)
Add 1 to 2.
3
The real part of 3+i is 3.