Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}
Rationalize the denominator of \frac{1+\sqrt{5}}{\sqrt{5}-2} by multiplying numerator and denominator by \sqrt{5}+2.
\frac{\left(1+\sqrt{5}\right)\left(\sqrt{5}+2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{5}\right)\left(\sqrt{5}+2\right)}{5-4}
Square \sqrt{5}. Square 2.
\frac{\left(1+\sqrt{5}\right)\left(\sqrt{5}+2\right)}{1}
Subtract 4 from 5 to get 1.
\left(1+\sqrt{5}\right)\left(\sqrt{5}+2\right)
Anything divided by one gives itself.
\sqrt{5}+2+\left(\sqrt{5}\right)^{2}+2\sqrt{5}
Apply the distributive property by multiplying each term of 1+\sqrt{5} by each term of \sqrt{5}+2.
\sqrt{5}+2+5+2\sqrt{5}
The square of \sqrt{5} is 5.
\sqrt{5}+7+2\sqrt{5}
Add 2 and 5 to get 7.
3\sqrt{5}+7
Combine \sqrt{5} and 2\sqrt{5} to get 3\sqrt{5}.