Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}{\left(1-i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}
Rationalize the denominator of \frac{1+i\sqrt{3}}{1-i\sqrt{3}} by multiplying numerator and denominator by 1+i\sqrt{3}.
\frac{\left(1+i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Consider \left(1-i\sqrt{3}\right)\left(1+i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\sqrt{3}\right)^{2}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Multiply 1+i\sqrt{3} and 1+i\sqrt{3} to get \left(1+i\sqrt{3}\right)^{2}.
\frac{1+2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+i\sqrt{3}\right)^{2}.
\frac{1+2i\sqrt{3}-3}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2+2i\sqrt{3}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2+2i\sqrt{3}}{1-\left(-i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{-2+2i\sqrt{3}}{1-\left(-i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-i\sqrt{3}\right)^{2}.
\frac{-2+2i\sqrt{3}}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate -i to the power of 2 and get -1.
\frac{-2+2i\sqrt{3}}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{-2+2i\sqrt{3}}{1+3}
Multiply -1 and -3 to get 3.
\frac{-2+2i\sqrt{3}}{4}
Add 1 and 3 to get 4.