Evaluate
\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
Real Part
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\frac{\left(1+i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}{\left(1-i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}
Rationalize the denominator of \frac{1+i\sqrt{3}}{1-i\sqrt{3}} by multiplying numerator and denominator by 1+i\sqrt{3}.
\frac{\left(1+i\sqrt{3}\right)\left(1+i\sqrt{3}\right)}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Consider \left(1-i\sqrt{3}\right)\left(1+i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\sqrt{3}\right)^{2}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Multiply 1+i\sqrt{3} and 1+i\sqrt{3} to get \left(1+i\sqrt{3}\right)^{2}.
\frac{1+2i\sqrt{3}-\left(\sqrt{3}\right)^{2}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+i\sqrt{3}\right)^{2}.
\frac{1+2i\sqrt{3}-3}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{-2+2i\sqrt{3}}{1^{2}-\left(-i\sqrt{3}\right)^{2}}
Subtract 3 from 1 to get -2.
\frac{-2+2i\sqrt{3}}{1-\left(-i\sqrt{3}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{-2+2i\sqrt{3}}{1-\left(-i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-i\sqrt{3}\right)^{2}.
\frac{-2+2i\sqrt{3}}{1-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate -i to the power of 2 and get -1.
\frac{-2+2i\sqrt{3}}{1-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{-2+2i\sqrt{3}}{1+3}
Multiply -1 and -3 to get 3.
\frac{-2+2i\sqrt{3}}{4}
Add 1 and 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}