Evaluate
\sqrt{5}-\sqrt{3}\approx 0.50401717
Factor
\sqrt{5} - \sqrt{3} = 0.50401717
Share
Copied to clipboard
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Subtract 3 from 5 to get 2.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)+\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Since \frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2} and \frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}-\sqrt{3}-\sqrt{10}+\sqrt{6}}{2}
Do the multiplications in \left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)+\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right).
\frac{2\sqrt{5}-2\sqrt{3}}{2}
Do the calculations in \sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}-\sqrt{3}-\sqrt{10}+\sqrt{6}.
\sqrt{5}-\sqrt{3}
Divide each term of 2\sqrt{5}-2\sqrt{3} by 2 to get \sqrt{5}-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}