Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Rationalize the denominator of \frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Subtract 3 from 5 to get 2.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1-\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}+\frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)+\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Since \frac{\left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2} and \frac{\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}-\sqrt{3}-\sqrt{10}+\sqrt{6}}{2}
Do the multiplications in \left(1+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right)+\left(1-\sqrt{2}\right)\left(\sqrt{5}-\sqrt{3}\right).
\frac{2\sqrt{5}-2\sqrt{3}}{2}
Do the calculations in \sqrt{5}-\sqrt{3}+\sqrt{10}-\sqrt{6}+\sqrt{5}-\sqrt{3}-\sqrt{10}+\sqrt{6}.
\sqrt{5}-\sqrt{3}
Divide each term of 2\sqrt{5}-2\sqrt{3} by 2 to get \sqrt{5}-\sqrt{3}.