Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x}{1+x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+2}{1-x^{4}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2\left(-x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Extract the negative sign in x^{2}+1.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
Cancel out -x^{2}-1 in both numerator and denominator.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)-2}{\left(x-1\right)\left(x+1\right)}}
Since \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}+2x^{2}-2x^{2}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in 2x\left(x-1\right)\left(x+1\right)-2.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in 2x^{3}+2x^{2}-2x^{2}-2x-2.
\frac{\left(1+x^{2}+2x\right)\left(x-1\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Divide \frac{1+x^{2}+2x}{1+x^{2}} by \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{1+x^{2}+2x}{1+x^{2}} by the reciprocal of \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(-x-1+x^{3}+x^{2}\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply 1+x^{2}+2x by x-1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply -x-1+x^{3}+x^{2} by x+1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{-2x-2+2x^{5}-2x^{2}}
Use the distributive property to multiply 1+x^{2} by 2x^{3}-2x-2 and combine like terms.
\frac{\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x}{1+x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+2}{1-x^{4}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2\left(-x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Extract the negative sign in x^{2}+1.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
Cancel out -x^{2}-1 in both numerator and denominator.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)-2}{\left(x-1\right)\left(x+1\right)}}
Since \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}+2x^{2}-2x^{2}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in 2x\left(x-1\right)\left(x+1\right)-2.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in 2x^{3}+2x^{2}-2x^{2}-2x-2.
\frac{\left(1+x^{2}+2x\right)\left(x-1\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Divide \frac{1+x^{2}+2x}{1+x^{2}} by \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{1+x^{2}+2x}{1+x^{2}} by the reciprocal of \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(-x-1+x^{3}+x^{2}\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply 1+x^{2}+2x by x-1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply -x-1+x^{3}+x^{2} by x+1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{-2x-2+2x^{5}-2x^{2}}
Use the distributive property to multiply 1+x^{2} by 2x^{3}-2x-2 and combine like terms.