Evaluate
\frac{\left(1-x\right)\left(x+1\right)^{3}}{2\left(x^{2}+1\right)\left(1+x-x^{3}\right)}
Expand
\frac{x^{4}+2x^{3}-2x-1}{2\left(x^{2}+1\right)\left(x^{3}-x-1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x}{1+x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+2}{1-x^{4}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2\left(-x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Extract the negative sign in x^{2}+1.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
Cancel out -x^{2}-1 in both numerator and denominator.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)-2}{\left(x-1\right)\left(x+1\right)}}
Since \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}+2x^{2}-2x^{2}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in 2x\left(x-1\right)\left(x+1\right)-2.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in 2x^{3}+2x^{2}-2x^{2}-2x-2.
\frac{\left(1+x^{2}+2x\right)\left(x-1\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Divide \frac{1+x^{2}+2x}{1+x^{2}} by \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{1+x^{2}+2x}{1+x^{2}} by the reciprocal of \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(-x-1+x^{3}+x^{2}\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply 1+x^{2}+2x by x-1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply -x-1+x^{3}+x^{2} by x+1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{-2x-2+2x^{5}-2x^{2}}
Use the distributive property to multiply 1+x^{2} by 2x^{3}-2x-2 and combine like terms.
\frac{\frac{1+x^{2}}{1+x^{2}}+\frac{2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2x^{2}+2}{1-x^{4}}}
Since \frac{1+x^{2}}{1+x^{2}} and \frac{2x}{1+x^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{2\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+2}{1-x^{4}}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2\left(-x^{2}-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)}}
Extract the negative sign in x^{2}+1.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{2x+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
Cancel out -x^{2}-1 in both numerator and denominator.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{-2}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x\left(x-1\right)\left(x+1\right)-2}{\left(x-1\right)\left(x+1\right)}}
Since \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{-2}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}+2x^{2}-2x^{2}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in 2x\left(x-1\right)\left(x+1\right)-2.
\frac{\frac{1+x^{2}+2x}{1+x^{2}}}{\frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in 2x^{3}+2x^{2}-2x^{2}-2x-2.
\frac{\left(1+x^{2}+2x\right)\left(x-1\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Divide \frac{1+x^{2}+2x}{1+x^{2}} by \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{1+x^{2}+2x}{1+x^{2}} by the reciprocal of \frac{2x^{3}-2x-2}{\left(x-1\right)\left(x+1\right)}.
\frac{\left(-x-1+x^{3}+x^{2}\right)\left(x+1\right)}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply 1+x^{2}+2x by x-1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{\left(1+x^{2}\right)\left(2x^{3}-2x-2\right)}
Use the distributive property to multiply -x-1+x^{3}+x^{2} by x+1 and combine like terms.
\frac{-2x-1+x^{4}+2x^{3}}{-2x-2+2x^{5}-2x^{2}}
Use the distributive property to multiply 1+x^{2} by 2x^{3}-2x-2 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}