Evaluate
-\frac{17}{12}\approx -1.416666667
Factor
-\frac{17}{12} = -1\frac{5}{12} = -1.4166666666666667
Share
Copied to clipboard
\frac{1+\frac{1}{\frac{2}{2}+\frac{1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Convert 1 to fraction \frac{2}{2}.
\frac{1+\frac{1}{\frac{2+1}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{1+\frac{1}{\frac{3}{2}}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Add 2 and 1 to get 3.
\frac{1+1\times \frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{1+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{\frac{3}{3}+\frac{2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{3+2}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{3}}{1-\frac{1}{1-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Add 3 and 2 to get 5.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2}{2}-\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{2-1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{3}}{1-\frac{1}{\frac{1}{2}}}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Subtract 1 from 2 to get 1.
\frac{\frac{5}{3}}{1-1\times 2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\frac{\frac{5}{3}}{1-2}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Multiply 1 and 2 to get 2.
\frac{\frac{5}{3}}{-1}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Subtract 2 from 1 to get -1.
\frac{5}{3\left(-1\right)}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Express \frac{\frac{5}{3}}{-1} as a single fraction.
\frac{5}{-3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Multiply 3 and -1 to get -3.
-\frac{5}{3}-\frac{2\times \frac{3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
-\frac{5}{3}-\frac{\frac{2\times 3}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Express 2\times \frac{3}{4} as a single fraction.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Multiply 2 and 3 to get 6.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{2\times 4+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{8+3}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Multiply 2 and 4 to get 8.
-\frac{5}{3}-\frac{\frac{3}{2}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Add 8 and 3 to get 11.
-\frac{5}{3}-\frac{\frac{6}{4}-\frac{11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{11}{4} to fractions with denominator 4.
-\frac{5}{3}-\frac{\frac{6-11}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Since \frac{6}{4} and \frac{11}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{1-\frac{3}{4}}}
Subtract 11 from 6 to get -5.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4}{4}-\frac{3}{4}}}
Convert 1 to fraction \frac{4}{4}.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{4-3}{4}}}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+\frac{1}{\frac{1}{4}}}
Subtract 3 from 4 to get 1.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+1\times 4}
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
-\frac{5}{3}-\frac{-\frac{5}{4}}{1+4}
Multiply 1 and 4 to get 4.
-\frac{5}{3}-\frac{-\frac{5}{4}}{5}
Add 1 and 4 to get 5.
-\frac{5}{3}-\frac{-5}{4\times 5}
Express \frac{-\frac{5}{4}}{5} as a single fraction.
-\frac{5}{3}-\frac{-5}{20}
Multiply 4 and 5 to get 20.
-\frac{5}{3}-\left(-\frac{1}{4}\right)
Reduce the fraction \frac{-5}{20} to lowest terms by extracting and canceling out 5.
-\frac{5}{3}+\frac{1}{4}
The opposite of -\frac{1}{4} is \frac{1}{4}.
-\frac{20}{12}+\frac{3}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{5}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{-20+3}{12}
Since -\frac{20}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
-\frac{17}{12}
Add -20 and 3 to get -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}