Evaluate
\frac{3\sqrt{2}}{4}\approx 1.060660172
Share
Copied to clipboard
\frac{1+\left(\frac{\sqrt{2}}{2}\right)^{2}}{2\sin(45)}
Get the value of \cos(45) from trigonometric values table.
\frac{1+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
Since \frac{2^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\times \frac{\sqrt{2}}{2}}
Get the value of \sin(45) from trigonometric values table.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{\sqrt{2}}
Cancel out 2 and 2.
\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}\sqrt{2}}
Express \frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{\sqrt{2}} as a single fraction.
\frac{\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\times 2}
The square of \sqrt{2} is 2.
\frac{\left(4+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\times 2}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+2\right)\sqrt{2}}{2^{2}\times 2}
The square of \sqrt{2} is 2.
\frac{6\sqrt{2}}{2^{2}\times 2}
Add 4 and 2 to get 6.
\frac{6\sqrt{2}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{6\sqrt{2}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{3}{4}\sqrt{2}
Divide 6\sqrt{2} by 8 to get \frac{3}{4}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}