Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1+\left(\frac{\sqrt{2}}{2}\right)^{2}}{2\sin(45)}
Get the value of \cos(45) from trigonometric values table.
\frac{1+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\sin(45)}
Since \frac{2^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\times \frac{\sqrt{2}}{2}}
Get the value of \sin(45) from trigonometric values table.
\frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{\sqrt{2}}
Cancel out 2 and 2.
\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}\sqrt{2}}
Express \frac{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}{\sqrt{2}} as a single fraction.
\frac{\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\times 2}
The square of \sqrt{2} is 2.
\frac{\left(4+\left(\sqrt{2}\right)^{2}\right)\sqrt{2}}{2^{2}\times 2}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+2\right)\sqrt{2}}{2^{2}\times 2}
The square of \sqrt{2} is 2.
\frac{6\sqrt{2}}{2^{2}\times 2}
Add 4 and 2 to get 6.
\frac{6\sqrt{2}}{2^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{6\sqrt{2}}{8}
Calculate 2 to the power of 3 and get 8.
\frac{3}{4}\sqrt{2}
Divide 6\sqrt{2} by 8 to get \frac{3}{4}\sqrt{2}.