Solve for x
x=-\frac{103}{110}\approx -0.936363636
Graph
Share
Copied to clipboard
\frac{0.9}{1.2}+\frac{-9x}{1.2}-\frac{1.2-3x}{0.2}=\frac{5x+1}{0.3}
Divide each term of 0.9-9x by 1.2 to get \frac{0.9}{1.2}+\frac{-9x}{1.2}.
\frac{9}{12}+\frac{-9x}{1.2}-\frac{1.2-3x}{0.2}=\frac{5x+1}{0.3}
Expand \frac{0.9}{1.2} by multiplying both numerator and the denominator by 10.
\frac{3}{4}+\frac{-9x}{1.2}-\frac{1.2-3x}{0.2}=\frac{5x+1}{0.3}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{3}{4}-7.5x-\frac{1.2-3x}{0.2}=\frac{5x+1}{0.3}
Divide -9x by 1.2 to get -7.5x.
\frac{3}{4}-7.5x-\left(\frac{1.2}{0.2}+\frac{-3x}{0.2}\right)=\frac{5x+1}{0.3}
Divide each term of 1.2-3x by 0.2 to get \frac{1.2}{0.2}+\frac{-3x}{0.2}.
\frac{3}{4}-7.5x-\left(\frac{12}{2}+\frac{-3x}{0.2}\right)=\frac{5x+1}{0.3}
Expand \frac{1.2}{0.2} by multiplying both numerator and the denominator by 10.
\frac{3}{4}-7.5x-\left(6+\frac{-3x}{0.2}\right)=\frac{5x+1}{0.3}
Divide 12 by 2 to get 6.
\frac{3}{4}-7.5x-\left(6-15x\right)=\frac{5x+1}{0.3}
Divide -3x by 0.2 to get -15x.
\frac{3}{4}-7.5x-6-\left(-15x\right)=\frac{5x+1}{0.3}
To find the opposite of 6-15x, find the opposite of each term.
\frac{3}{4}-7.5x-6+15x=\frac{5x+1}{0.3}
The opposite of -15x is 15x.
\frac{3}{4}-7.5x-\frac{24}{4}+15x=\frac{5x+1}{0.3}
Convert 6 to fraction \frac{24}{4}.
\frac{3-24}{4}-7.5x+15x=\frac{5x+1}{0.3}
Since \frac{3}{4} and \frac{24}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{4}-7.5x+15x=\frac{5x+1}{0.3}
Subtract 24 from 3 to get -21.
-\frac{21}{4}+7.5x=\frac{5x+1}{0.3}
Combine -7.5x and 15x to get 7.5x.
-\frac{21}{4}+7.5x=\frac{5x}{0.3}+\frac{1}{0.3}
Divide each term of 5x+1 by 0.3 to get \frac{5x}{0.3}+\frac{1}{0.3}.
-\frac{21}{4}+7.5x=\frac{50}{3}x+\frac{1}{0.3}
Divide 5x by 0.3 to get \frac{50}{3}x.
-\frac{21}{4}+7.5x=\frac{50}{3}x+\frac{10}{3}
Expand \frac{1}{0.3} by multiplying both numerator and the denominator by 10.
-\frac{21}{4}+7.5x-\frac{50}{3}x=\frac{10}{3}
Subtract \frac{50}{3}x from both sides.
-\frac{21}{4}-\frac{55}{6}x=\frac{10}{3}
Combine 7.5x and -\frac{50}{3}x to get -\frac{55}{6}x.
-\frac{55}{6}x=\frac{10}{3}+\frac{21}{4}
Add \frac{21}{4} to both sides.
-\frac{55}{6}x=\frac{40}{12}+\frac{63}{12}
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{21}{4} to fractions with denominator 12.
-\frac{55}{6}x=\frac{40+63}{12}
Since \frac{40}{12} and \frac{63}{12} have the same denominator, add them by adding their numerators.
-\frac{55}{6}x=\frac{103}{12}
Add 40 and 63 to get 103.
x=\frac{\frac{103}{12}}{-\frac{55}{6}}
Divide both sides by -\frac{55}{6}.
x=\frac{103}{12\left(-\frac{55}{6}\right)}
Express \frac{\frac{103}{12}}{-\frac{55}{6}} as a single fraction.
x=\frac{103}{-110}
Multiply 12 and -\frac{55}{6} to get -110.
x=-\frac{103}{110}
Fraction \frac{103}{-110} can be rewritten as -\frac{103}{110} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}