Solve for x
x=-5
Graph
Share
Copied to clipboard
12\times \frac{0.5x+2}{0.03}-12x=12\times \frac{0.3\left(0.5x+2\right)}{0.2}-\left(10\times 12+11\right)
Multiply both sides of the equation by 12.
12\times \frac{0.5x+2}{0.03}-12x=12\times \frac{0.15x+0.6}{0.2}-\left(10\times 12+11\right)
Use the distributive property to multiply 0.3 by 0.5x+2.
12\times \frac{0.5x+2}{0.03}-12x=12\times \frac{0.15x+0.6}{0.2}-\left(120+11\right)
Multiply 10 and 12 to get 120.
12\times \frac{0.5x+2}{0.03}-12x=12\times \frac{0.15x+0.6}{0.2}-131
Add 120 and 11 to get 131.
12\left(\frac{0.5x}{0.03}+\frac{2}{0.03}\right)-12x=12\times \frac{0.15x+0.6}{0.2}-131
Divide each term of 0.5x+2 by 0.03 to get \frac{0.5x}{0.03}+\frac{2}{0.03}.
12\left(\frac{50}{3}x+\frac{2}{0.03}\right)-12x=12\times \frac{0.15x+0.6}{0.2}-131
Divide 0.5x by 0.03 to get \frac{50}{3}x.
12\left(\frac{50}{3}x+\frac{200}{3}\right)-12x=12\times \frac{0.15x+0.6}{0.2}-131
Expand \frac{2}{0.03} by multiplying both numerator and the denominator by 100.
200x+12\times \frac{200}{3}-12x=12\times \frac{0.15x+0.6}{0.2}-131
Use the distributive property to multiply 12 by \frac{50}{3}x+\frac{200}{3}.
200x+\frac{12\times 200}{3}-12x=12\times \frac{0.15x+0.6}{0.2}-131
Express 12\times \frac{200}{3} as a single fraction.
200x+\frac{2400}{3}-12x=12\times \frac{0.15x+0.6}{0.2}-131
Multiply 12 and 200 to get 2400.
200x+800-12x=12\times \frac{0.15x+0.6}{0.2}-131
Divide 2400 by 3 to get 800.
188x+800=12\times \frac{0.15x+0.6}{0.2}-131
Combine 200x and -12x to get 188x.
188x+800=12\left(\frac{0.15x}{0.2}+\frac{0.6}{0.2}\right)-131
Divide each term of 0.15x+0.6 by 0.2 to get \frac{0.15x}{0.2}+\frac{0.6}{0.2}.
188x+800=12\left(0.75x+\frac{0.6}{0.2}\right)-131
Divide 0.15x by 0.2 to get 0.75x.
188x+800=12\left(0.75x+\frac{6}{2}\right)-131
Expand \frac{0.6}{0.2} by multiplying both numerator and the denominator by 10.
188x+800=12\left(0.75x+3\right)-131
Divide 6 by 2 to get 3.
188x+800=9x+36-131
Use the distributive property to multiply 12 by 0.75x+3.
188x+800=9x-95
Subtract 131 from 36 to get -95.
188x+800-9x=-95
Subtract 9x from both sides.
179x+800=-95
Combine 188x and -9x to get 179x.
179x=-95-800
Subtract 800 from both sides.
179x=-895
Subtract 800 from -95 to get -895.
x=\frac{-895}{179}
Divide both sides by 179.
x=-5
Divide -895 by 179 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}