Solve for x
x=-\frac{2\left(729+10125y-1125y^{2}-6250y^{3}\right)}{375y\left(100y-117\right)}
y\neq 0\text{ and }y\neq \frac{117}{100}\text{ and }y\neq -\frac{9}{20}
Graph
Share
Copied to clipboard
\frac{45}{200}\times \frac{\left(1.2-0.48-y\right)^{2}}{1.2-0.48-y+0.45}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Expand \frac{0.45}{2} by multiplying both numerator and the denominator by 100.
\frac{9}{40}\times \frac{\left(1.2-0.48-y\right)^{2}}{1.2-0.48-y+0.45}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Reduce the fraction \frac{45}{200} to lowest terms by extracting and canceling out 5.
\frac{9}{40}\times \frac{\left(0.72-y\right)^{2}}{1.2-0.48-y+0.45}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Subtract 0.48 from 1.2 to get 0.72.
\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.2-0.48-y+0.45}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.72-y\right)^{2}.
\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{0.72-y+0.45}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Subtract 0.48 from 1.2 to get 0.72.
\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}=3\times \frac{1}{1+\frac{y}{0.45}}\left(\left(x-0.48\right)y-\frac{1}{2}y^{2}\right)
Add 0.72 and 0.45 to get 1.17.
\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}=3\times \frac{1}{1+\frac{y}{0.45}}\left(xy-0.48y-\frac{1}{2}y^{2}\right)
Use the distributive property to multiply x-0.48 by y.
\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}=3\times \frac{1}{1+\frac{y}{0.45}}xy-1.44\times \frac{1}{1+\frac{y}{0.45}}y-\frac{3}{2}\times \frac{1}{1+\frac{y}{0.45}}y^{2}
Use the distributive property to multiply 3\times \frac{1}{1+\frac{y}{0.45}} by xy-0.48y-\frac{1}{2}y^{2}.
3\times \frac{1}{1+\frac{y}{0.45}}xy-1.44\times \frac{1}{1+\frac{y}{0.45}}y-\frac{3}{2}\times \frac{1}{1+\frac{y}{0.45}}y^{2}=\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}
Swap sides so that all variable terms are on the left hand side.
3\times \frac{1}{1+\frac{y}{0.45}}xy-\frac{3}{2}\times \frac{1}{1+\frac{y}{0.45}}y^{2}=\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}+1.44\times \frac{1}{1+\frac{y}{0.45}}y
Add 1.44\times \frac{1}{1+\frac{y}{0.45}}y to both sides.
3\times \frac{1}{1+\frac{y}{0.45}}xy=\frac{9}{40}\times \frac{0.5184-1.44y+y^{2}}{1.17-y}+1.44\times \frac{1}{1+\frac{y}{0.45}}y+\frac{3}{2}\times \frac{1}{1+\frac{y}{0.45}}y^{2}
Add \frac{3}{2}\times \frac{1}{1+\frac{y}{0.45}}y^{2} to both sides.
\frac{3y}{\frac{20y}{9}+1}x=\frac{\frac{1458}{125}+162y-18y^{2}-100y^{3}}{-\frac{2000y^{2}}{9}+160y+117}
The equation is in standard form.
\frac{\frac{3y}{\frac{20y}{9}+1}x\left(\frac{20y}{9}+1\right)}{3y}=\frac{18\left(729+10125y-1125y^{2}-6250y^{3}\right)}{125\left(1053+1440y-2000y^{2}\right)\times \frac{3y}{\frac{20y}{9}+1}}
Divide both sides by 3\left(1+\frac{20}{9}y\right)^{-1}y.
x=\frac{18\left(729+10125y-1125y^{2}-6250y^{3}\right)}{125\left(1053+1440y-2000y^{2}\right)\times \frac{3y}{\frac{20y}{9}+1}}
Dividing by 3\left(1+\frac{20}{9}y\right)^{-1}y undoes the multiplication by 3\left(1+\frac{20}{9}y\right)^{-1}y.
x=\frac{2\left(729+10125y-1125y^{2}-6250y^{3}\right)}{375y\left(117-100y\right)}
Divide \frac{18\left(729+10125y-1125y^{2}-6250y^{3}\right)}{125\left(1053+1440y-2000y^{2}\right)} by 3\left(1+\frac{20}{9}y\right)^{-1}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}