Solve for x
x = \frac{109}{21} = 5\frac{4}{21} \approx 5.19047619
Graph
Share
Copied to clipboard
2\times \frac{0.04x+0.09}{0.05}-2\times \frac{0.3x+0.2}{0.3}=x-5
Multiply both sides of the equation by 2.
2\left(\frac{0.04x}{0.05}+\frac{0.09}{0.05}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Divide each term of 0.04x+0.09 by 0.05 to get \frac{0.04x}{0.05}+\frac{0.09}{0.05}.
2\left(0.8x+\frac{0.09}{0.05}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Divide 0.04x by 0.05 to get 0.8x.
2\left(0.8x+\frac{9}{5}\right)-2\times \frac{0.3x+0.2}{0.3}=x-5
Expand \frac{0.09}{0.05} by multiplying both numerator and the denominator by 100.
1.6x+2\times \frac{9}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Use the distributive property to multiply 2 by 0.8x+\frac{9}{5}.
1.6x+\frac{2\times 9}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Express 2\times \frac{9}{5} as a single fraction.
1.6x+\frac{18}{5}-2\times \frac{0.3x+0.2}{0.3}=x-5
Multiply 2 and 9 to get 18.
1.6x+\frac{18}{5}-2\left(\frac{0.3x}{0.3}+\frac{0.2}{0.3}\right)=x-5
Divide each term of 0.3x+0.2 by 0.3 to get \frac{0.3x}{0.3}+\frac{0.2}{0.3}.
1.6x+\frac{18}{5}-2\left(x+\frac{0.2}{0.3}\right)=x-5
Cancel out 0.3 and 0.3.
1.6x+\frac{18}{5}-2\left(x+\frac{2}{3}\right)=x-5
Expand \frac{0.2}{0.3} by multiplying both numerator and the denominator by 10.
1.6x+\frac{18}{5}-2x-2\times \frac{2}{3}=x-5
Use the distributive property to multiply -2 by x+\frac{2}{3}.
1.6x+\frac{18}{5}-2x+\frac{-2\times 2}{3}=x-5
Express -2\times \frac{2}{3} as a single fraction.
1.6x+\frac{18}{5}-2x+\frac{-4}{3}=x-5
Multiply -2 and 2 to get -4.
1.6x+\frac{18}{5}-2x-\frac{4}{3}=x-5
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-0.4x+\frac{18}{5}-\frac{4}{3}=x-5
Combine 1.6x and -2x to get -0.4x.
-0.4x+\frac{54}{15}-\frac{20}{15}=x-5
Least common multiple of 5 and 3 is 15. Convert \frac{18}{5} and \frac{4}{3} to fractions with denominator 15.
-0.4x+\frac{54-20}{15}=x-5
Since \frac{54}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
-0.4x+\frac{34}{15}=x-5
Subtract 20 from 54 to get 34.
-0.4x+\frac{34}{15}-x=-5
Subtract x from both sides.
-1.4x+\frac{34}{15}=-5
Combine -0.4x and -x to get -1.4x.
-1.4x=-5-\frac{34}{15}
Subtract \frac{34}{15} from both sides.
-1.4x=-\frac{75}{15}-\frac{34}{15}
Convert -5 to fraction -\frac{75}{15}.
-1.4x=\frac{-75-34}{15}
Since -\frac{75}{15} and \frac{34}{15} have the same denominator, subtract them by subtracting their numerators.
-1.4x=-\frac{109}{15}
Subtract 34 from -75 to get -109.
x=\frac{-\frac{109}{15}}{-1.4}
Divide both sides by -1.4.
x=\frac{-109}{15\left(-1.4\right)}
Express \frac{-\frac{109}{15}}{-1.4} as a single fraction.
x=\frac{-109}{-21}
Multiply 15 and -1.4 to get -21.
x=\frac{109}{21}
Fraction \frac{-109}{-21} can be simplified to \frac{109}{21} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}