Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{0.02x}{0.03}+\frac{0.01}{0.03}-\frac{0.6x+1}{0.6}=2-\frac{61}{4}x
Divide each term of 0.02x+0.01 by 0.03 to get \frac{0.02x}{0.03}+\frac{0.01}{0.03}.
\frac{2}{3}x+\frac{0.01}{0.03}-\frac{0.6x+1}{0.6}=2-\frac{61}{4}x
Divide 0.02x by 0.03 to get \frac{2}{3}x.
\frac{2}{3}x+\frac{1}{3}-\frac{0.6x+1}{0.6}=2-\frac{61}{4}x
Expand \frac{0.01}{0.03} by multiplying both numerator and the denominator by 100.
\frac{2}{3}x+\frac{1}{3}-\left(\frac{0.6x}{0.6}+\frac{1}{0.6}\right)=2-\frac{61}{4}x
Divide each term of 0.6x+1 by 0.6 to get \frac{0.6x}{0.6}+\frac{1}{0.6}.
\frac{2}{3}x+\frac{1}{3}-\left(x+\frac{1}{0.6}\right)=2-\frac{61}{4}x
Cancel out 0.6 and 0.6.
\frac{2}{3}x+\frac{1}{3}-\left(x+\frac{10}{6}\right)=2-\frac{61}{4}x
Expand \frac{1}{0.6} by multiplying both numerator and the denominator by 10.
\frac{2}{3}x+\frac{1}{3}-\left(x+\frac{5}{3}\right)=2-\frac{61}{4}x
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{1}{3}-x-\frac{5}{3}=2-\frac{61}{4}x
To find the opposite of x+\frac{5}{3}, find the opposite of each term.
-\frac{1}{3}x+\frac{1}{3}-\frac{5}{3}=2-\frac{61}{4}x
Combine \frac{2}{3}x and -x to get -\frac{1}{3}x.
-\frac{1}{3}x+\frac{1-5}{3}=2-\frac{61}{4}x
Since \frac{1}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}x-\frac{4}{3}=2-\frac{61}{4}x
Subtract 5 from 1 to get -4.
-\frac{1}{3}x-\frac{4}{3}+\frac{61}{4}x=2
Add \frac{61}{4}x to both sides.
\frac{179}{12}x-\frac{4}{3}=2
Combine -\frac{1}{3}x and \frac{61}{4}x to get \frac{179}{12}x.
\frac{179}{12}x=2+\frac{4}{3}
Add \frac{4}{3} to both sides.
\frac{179}{12}x=\frac{6}{3}+\frac{4}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{179}{12}x=\frac{6+4}{3}
Since \frac{6}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{179}{12}x=\frac{10}{3}
Add 6 and 4 to get 10.
x=\frac{10}{3}\times \frac{12}{179}
Multiply both sides by \frac{12}{179}, the reciprocal of \frac{179}{12}.
x=\frac{10\times 12}{3\times 179}
Multiply \frac{10}{3} times \frac{12}{179} by multiplying numerator times numerator and denominator times denominator.
x=\frac{120}{537}
Do the multiplications in the fraction \frac{10\times 12}{3\times 179}.
x=\frac{40}{179}
Reduce the fraction \frac{120}{537} to lowest terms by extracting and canceling out 3.