Solve for x
x=-1
Graph
Share
Copied to clipboard
\frac{0.02}{0.03}+\frac{-0.1x}{0.03}-2=\frac{1-2x}{1.5}
Divide each term of 0.02-0.1x by 0.03 to get \frac{0.02}{0.03}+\frac{-0.1x}{0.03}.
\frac{2}{3}+\frac{-0.1x}{0.03}-2=\frac{1-2x}{1.5}
Expand \frac{0.02}{0.03} by multiplying both numerator and the denominator by 100.
\frac{2}{3}-\frac{10}{3}x-2=\frac{1-2x}{1.5}
Divide -0.1x by 0.03 to get -\frac{10}{3}x.
\frac{2}{3}-\frac{10}{3}x-\frac{6}{3}=\frac{1-2x}{1.5}
Convert 2 to fraction \frac{6}{3}.
\frac{2-6}{3}-\frac{10}{3}x=\frac{1-2x}{1.5}
Since \frac{2}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}-\frac{10}{3}x=\frac{1-2x}{1.5}
Subtract 6 from 2 to get -4.
-\frac{4}{3}-\frac{10}{3}x=\frac{1}{1.5}+\frac{-2x}{1.5}
Divide each term of 1-2x by 1.5 to get \frac{1}{1.5}+\frac{-2x}{1.5}.
-\frac{4}{3}-\frac{10}{3}x=\frac{10}{15}+\frac{-2x}{1.5}
Expand \frac{1}{1.5} by multiplying both numerator and the denominator by 10.
-\frac{4}{3}-\frac{10}{3}x=\frac{2}{3}+\frac{-2x}{1.5}
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
-\frac{4}{3}-\frac{10}{3}x=\frac{2}{3}-\frac{4}{3}x
Divide -2x by 1.5 to get -\frac{4}{3}x.
-\frac{4}{3}-\frac{10}{3}x+\frac{4}{3}x=\frac{2}{3}
Add \frac{4}{3}x to both sides.
-\frac{4}{3}-2x=\frac{2}{3}
Combine -\frac{10}{3}x and \frac{4}{3}x to get -2x.
-2x=\frac{2}{3}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-2x=\frac{2+4}{3}
Since \frac{2}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
-2x=\frac{6}{3}
Add 2 and 4 to get 6.
-2x=2
Divide 6 by 3 to get 2.
x=\frac{2}{-2}
Divide both sides by -2.
x=-1
Divide 2 by -2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}