\frac { 0,8 } { 180 } = \frac { x } { \pi }
Solve for x
x=\frac{\pi }{225}\approx 0.013962634
Graph
Share
Copied to clipboard
\frac{8}{1800}=\frac{x}{\pi }
Expand \frac{0,8}{180} by multiplying both numerator and the denominator by 10.
\frac{1}{225}=\frac{x}{\pi }
Reduce the fraction \frac{8}{1800} to lowest terms by extracting and canceling out 8.
\frac{x}{\pi }=\frac{1}{225}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\pi }x=\frac{1}{225}
The equation is in standard form.
\frac{\frac{1}{\pi }x\pi }{1}=\frac{\frac{1}{225}\pi }{1}
Divide both sides by \pi ^{-1}.
x=\frac{\frac{1}{225}\pi }{1}
Dividing by \pi ^{-1} undoes the multiplication by \pi ^{-1}.
x=\frac{\pi }{225}
Divide \frac{1}{225} by \pi ^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}