Solve for y
y=6.2
Graph
Share
Copied to clipboard
\left(y-5\right)\times 0.1=\left(y-6\right)\times 0.6
Variable y cannot be equal to any of the values 5,6 since division by zero is not defined. Multiply both sides of the equation by \left(y-6\right)\left(y-5\right), the least common multiple of y-6,y-5.
0.1y-0.5=\left(y-6\right)\times 0.6
Use the distributive property to multiply y-5 by 0.1.
0.1y-0.5=0.6y-3.6
Use the distributive property to multiply y-6 by 0.6.
0.1y-0.5-0.6y=-3.6
Subtract 0.6y from both sides.
-0.5y-0.5=-3.6
Combine 0.1y and -0.6y to get -0.5y.
-0.5y=-3.6+0.5
Add 0.5 to both sides.
-0.5y=-3.1
Add -3.6 and 0.5 to get -3.1.
y=\frac{-3.1}{-0.5}
Divide both sides by -0.5.
y=\frac{-31}{-5}
Expand \frac{-3.1}{-0.5} by multiplying both numerator and the denominator by 10.
y=\frac{31}{5}
Fraction \frac{-31}{-5} can be simplified to \frac{31}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}