Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
\frac { 0,0001 \cdot ( 0,01 ) ^ { 2 } \cdot 1000 } { 0,0001 }
Evaluate
0.1
View solution steps
Solution Steps
\frac { 0,0001 \cdot ( 0,01 ) ^ { 2 } \cdot 1000 } { 0,0001 }
Cancel out 0.0001 and 0.0001.
0.01^{2}\times 1000
Calculate 0.01 to the power of 2 and get 0.0001.
0.0001\times 1000
Multiply 0.0001 and 1000 to get 0.1.
0.1
Factor
\frac{1}{2 \cdot 5} = 0.1
Quiz
5 problems similar to:
\frac { 0,0001 \cdot ( 0,01 ) ^ { 2 } \cdot 1000 } { 0,0001 }
Similar Problems from Web Search
How do you evaluate \displaystyle{48}^{{\frac{{4}}{{3}}}}\cdot{8}^{{\frac{{2}}{{3}}}}\cdot{\left(\frac{{1}}{{6}^{{2}}}\right)}^{{\frac{{3}}{{2}}}} ?
https://socratic.org/questions/how-do-you-evaluate-48-4-3-8-2-3-1-6-2-3-2
\displaystyle{48}^{{\frac{{4}}{{3}}}}\cdot{8}^{{\frac{{2}}{{3}}}}\cdot{\left(\frac{{1}}{{6}^{{2}}}\right)}^{{\frac{{3}}{{2}}}}=\frac{{2}^{{\frac{{13}}{{3}}}}}{{3}^{{\frac{{1}}{{3}}}}} ...
How do you divide \displaystyle\frac{{{6.02}\cdot{10}^{{23}}}}{{{1.5}\cdot{10}^{{12}}}} ?
https://socratic.org/questions/how-do-you-divide-6-02-10-23-1-5-10-12
Alan P. Mar 28, 2015 Handle the coefficient division and the exponent division separately \displaystyle\frac{{6.02}}{{1.5}}={4.0133333}^{{.}} \displaystyle\frac{{10}^{{23}}}{{10}^{{12}}}={10}^{{11}} ...
Mathematical Statistics: A random 4-tuple of digits has 3 as its smallest digit.
https://math.stackexchange.com/questions/2677176/mathematical-statistics-a-random-4-tuple-of-digits-has-3-as-its-smallest-digit/2677215
In this case, you have four types of favorable cases (according to the number of 3's in the vector) Favorable cases: \binom{4}{1}6^3+\binom{4}{2}6^2+\binom{4}{3}6+\binom{4}{4} The total number of ...
How many \alpha \in S_n are such that \alpha^2 = 1?
https://math.stackexchange.com/questions/583506/how-many-alpha-in-s-n-are-such-that-alpha2-1
The way I was taught it, there are \frac{n(n-1)}{2} 2-cycles, \frac{n(n-1)(n-2)(n-3)}{2^2 \cdot 2} products of two disjoint 2-cycles, and in general \frac{n(n-1) \cdot \dots \cdot (n-2k+2)(n - 2 k +1)}{2^k \cdot k!} ...
Two different ways of calculating distance from acceleration produce different results?
https://math.stackexchange.com/questions/2244895/two-different-ways-of-calculating-distance-from-acceleration-produce-different-r
Note that your formula d = v_0 \cdot t + \frac{a \cdot t^2}{2} is only valid if the acceleration is constant though that is not your problem here. Your problem is the size of your sample ...
probability of two successive random numbers has the same starting number
https://math.stackexchange.com/questions/1120227/probability-of-two-successive-random-numbers-has-the-same-starting-number
Answer is 1/9.for example you take a 5 digit number then there are 9*10*10*10*10 ways then for successive number to have same digit there are 1*10*10*10*10 ways.probability is 1/9 by dividing
More Items
Share
Copy
Copied to clipboard
0.01^{2}\times 1000
Cancel out 0.0001 and 0.0001.
0.0001\times 1000
Calculate 0.01 to the power of 2 and get 0.0001.
0.1
Multiply 0.0001 and 1000 to get 0.1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}
Back to top