Evaluate
-\frac{12\sqrt{3924885}}{1308295}\approx -0.018171427
Share
Copied to clipboard
\frac{0-0.15}{\sqrt{\frac{0.34875\times 0.65125}{\frac{1}{300}}+\frac{1}{300}}}
Zero divided by any non-zero number gives zero.
\frac{-0.15}{\sqrt{\frac{0.34875\times 0.65125}{\frac{1}{300}}+\frac{1}{300}}}
Subtract 0.15 from 0 to get -0.15.
\frac{-0.15}{\sqrt{\frac{0.2271234375}{\frac{1}{300}}+\frac{1}{300}}}
Multiply 0.34875 and 0.65125 to get 0.2271234375.
\frac{-0.15}{\sqrt{0.2271234375\times 300+\frac{1}{300}}}
Divide 0.2271234375 by \frac{1}{300} by multiplying 0.2271234375 by the reciprocal of \frac{1}{300}.
\frac{-0.15}{\sqrt{68.13703125+\frac{1}{300}}}
Multiply 0.2271234375 and 300 to get 68.13703125.
\frac{-0.15}{\sqrt{\frac{436077}{6400}+\frac{1}{300}}}
Convert decimal number 68.13703125 to fraction \frac{6813703125}{100000000}. Reduce the fraction \frac{6813703125}{100000000} to lowest terms by extracting and canceling out 15625.
\frac{-0.15}{\sqrt{\frac{1308231}{19200}+\frac{64}{19200}}}
Least common multiple of 6400 and 300 is 19200. Convert \frac{436077}{6400} and \frac{1}{300} to fractions with denominator 19200.
\frac{-0.15}{\sqrt{\frac{1308231+64}{19200}}}
Since \frac{1308231}{19200} and \frac{64}{19200} have the same denominator, add them by adding their numerators.
\frac{-0.15}{\sqrt{\frac{1308295}{19200}}}
Add 1308231 and 64 to get 1308295.
\frac{-0.15}{\sqrt{\frac{261659}{3840}}}
Reduce the fraction \frac{1308295}{19200} to lowest terms by extracting and canceling out 5.
\frac{-0.15}{\frac{\sqrt{261659}}{\sqrt{3840}}}
Rewrite the square root of the division \sqrt{\frac{261659}{3840}} as the division of square roots \frac{\sqrt{261659}}{\sqrt{3840}}.
\frac{-0.15}{\frac{\sqrt{261659}}{16\sqrt{15}}}
Factor 3840=16^{2}\times 15. Rewrite the square root of the product \sqrt{16^{2}\times 15} as the product of square roots \sqrt{16^{2}}\sqrt{15}. Take the square root of 16^{2}.
\frac{-0.15}{\frac{\sqrt{261659}\sqrt{15}}{16\left(\sqrt{15}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{261659}}{16\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{-0.15}{\frac{\sqrt{261659}\sqrt{15}}{16\times 15}}
The square of \sqrt{15} is 15.
\frac{-0.15}{\frac{\sqrt{3924885}}{16\times 15}}
To multiply \sqrt{261659} and \sqrt{15}, multiply the numbers under the square root.
\frac{-0.15}{\frac{\sqrt{3924885}}{240}}
Multiply 16 and 15 to get 240.
\frac{-0.15\times 240}{\sqrt{3924885}}
Divide -0.15 by \frac{\sqrt{3924885}}{240} by multiplying -0.15 by the reciprocal of \frac{\sqrt{3924885}}{240}.
\frac{-0.15\times 240\sqrt{3924885}}{\left(\sqrt{3924885}\right)^{2}}
Rationalize the denominator of \frac{-0.15\times 240}{\sqrt{3924885}} by multiplying numerator and denominator by \sqrt{3924885}.
\frac{-0.15\times 240\sqrt{3924885}}{3924885}
The square of \sqrt{3924885} is 3924885.
\frac{-36\sqrt{3924885}}{3924885}
Multiply -0.15 and 240 to get -36.
-\frac{12}{1308295}\sqrt{3924885}
Divide -36\sqrt{3924885} by 3924885 to get -\frac{12}{1308295}\sqrt{3924885}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}