Evaluate
-\frac{9\sqrt{7}\left(y+1\right)}{14}
Differentiate w.r.t. y
-\frac{9 \sqrt{7}}{14} = -1.7008401285415224
Graph
Share
Copied to clipboard
\frac{-y-1}{\sqrt{7+0}}\times \frac{9}{2}
Anything times zero gives zero.
\frac{-y-1}{\sqrt{7}}\times \frac{9}{2}
Add 7 and 0 to get 7.
\frac{\left(-y-1\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\times \frac{9}{2}
Rationalize the denominator of \frac{-y-1}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(-y-1\right)\sqrt{7}}{7}\times \frac{9}{2}
The square of \sqrt{7} is 7.
\frac{\left(-y-1\right)\sqrt{7}\times 9}{7\times 2}
Multiply \frac{\left(-y-1\right)\sqrt{7}}{7} times \frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-y-1\right)\sqrt{7}\times 9}{14}
Multiply 7 and 2 to get 14.
\frac{\left(-y\sqrt{7}-\sqrt{7}\right)\times 9}{14}
Use the distributive property to multiply -y-1 by \sqrt{7}.
\frac{-9y\sqrt{7}-9\sqrt{7}}{14}
Use the distributive property to multiply -y\sqrt{7}-\sqrt{7} by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}