Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-b\right)\times 3b}{3ab}-\frac{\left(2a-b\right)a}{3ab}-\frac{3b-a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and 3b is 3ab. Multiply \frac{-b}{a} times \frac{3b}{3b}. Multiply \frac{2a-b}{3b} times \frac{a}{a}.
\frac{\left(-b\right)\times 3b-\left(2a-b\right)a}{3ab}-\frac{3b-a}{6a}
Since \frac{\left(-b\right)\times 3b}{3ab} and \frac{\left(2a-b\right)a}{3ab} have the same denominator, subtract them by subtracting their numerators.
\frac{-3b^{2}-2a^{2}+ba}{3ab}-\frac{3b-a}{6a}
Do the multiplications in \left(-b\right)\times 3b-\left(2a-b\right)a.
\frac{2\left(-3b^{2}-2a^{2}+ba\right)}{6ab}-\frac{\left(3b-a\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and 6a is 6ab. Multiply \frac{-3b^{2}-2a^{2}+ba}{3ab} times \frac{2}{2}. Multiply \frac{3b-a}{6a} times \frac{b}{b}.
\frac{2\left(-3b^{2}-2a^{2}+ba\right)-\left(3b-a\right)b}{6ab}
Since \frac{2\left(-3b^{2}-2a^{2}+ba\right)}{6ab} and \frac{\left(3b-a\right)b}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{-6b^{2}-4a^{2}+2ba-3b^{2}+ba}{6ab}
Do the multiplications in 2\left(-3b^{2}-2a^{2}+ba\right)-\left(3b-a\right)b.
\frac{-9b^{2}+3ba-4a^{2}}{6ab}
Combine like terms in -6b^{2}-4a^{2}+2ba-3b^{2}+ba.
\frac{\left(-b\right)\times 3b}{3ab}-\frac{\left(2a-b\right)a}{3ab}-\frac{3b-a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and 3b is 3ab. Multiply \frac{-b}{a} times \frac{3b}{3b}. Multiply \frac{2a-b}{3b} times \frac{a}{a}.
\frac{\left(-b\right)\times 3b-\left(2a-b\right)a}{3ab}-\frac{3b-a}{6a}
Since \frac{\left(-b\right)\times 3b}{3ab} and \frac{\left(2a-b\right)a}{3ab} have the same denominator, subtract them by subtracting their numerators.
\frac{-3b^{2}-2a^{2}+ba}{3ab}-\frac{3b-a}{6a}
Do the multiplications in \left(-b\right)\times 3b-\left(2a-b\right)a.
\frac{2\left(-3b^{2}-2a^{2}+ba\right)}{6ab}-\frac{\left(3b-a\right)b}{6ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and 6a is 6ab. Multiply \frac{-3b^{2}-2a^{2}+ba}{3ab} times \frac{2}{2}. Multiply \frac{3b-a}{6a} times \frac{b}{b}.
\frac{2\left(-3b^{2}-2a^{2}+ba\right)-\left(3b-a\right)b}{6ab}
Since \frac{2\left(-3b^{2}-2a^{2}+ba\right)}{6ab} and \frac{\left(3b-a\right)b}{6ab} have the same denominator, subtract them by subtracting their numerators.
\frac{-6b^{2}-4a^{2}+2ba-3b^{2}+ba}{6ab}
Do the multiplications in 2\left(-3b^{2}-2a^{2}+ba\right)-\left(3b-a\right)b.
\frac{-9b^{2}+3ba-4a^{2}}{6ab}
Combine like terms in -6b^{2}-4a^{2}+2ba-3b^{2}+ba.