Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-a}{\left(a-3\right)\left(a+3\right)}+\frac{1}{3\left(a+3\right)}+\frac{1}{2a-6}
Factor a^{2}-9. Factor 3a+9.
\frac{3\left(-a\right)}{3\left(a-3\right)\left(a+3\right)}+\frac{a-3}{3\left(a-3\right)\left(a+3\right)}+\frac{1}{2a-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and 3\left(a+3\right) is 3\left(a-3\right)\left(a+3\right). Multiply \frac{-a}{\left(a-3\right)\left(a+3\right)} times \frac{3}{3}. Multiply \frac{1}{3\left(a+3\right)} times \frac{a-3}{a-3}.
\frac{3\left(-a\right)+a-3}{3\left(a-3\right)\left(a+3\right)}+\frac{1}{2a-6}
Since \frac{3\left(-a\right)}{3\left(a-3\right)\left(a+3\right)} and \frac{a-3}{3\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{-3a+a-3}{3\left(a-3\right)\left(a+3\right)}+\frac{1}{2a-6}
Do the multiplications in 3\left(-a\right)+a-3.
\frac{-2a-3}{3\left(a-3\right)\left(a+3\right)}+\frac{1}{2a-6}
Combine like terms in -3a+a-3.
\frac{-2a-3}{3\left(a-3\right)\left(a+3\right)}+\frac{1}{2\left(a-3\right)}
Factor 2a-6.
\frac{2\left(-2a-3\right)}{6\left(a-3\right)\left(a+3\right)}+\frac{3\left(a+3\right)}{6\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(a-3\right)\left(a+3\right) and 2\left(a-3\right) is 6\left(a-3\right)\left(a+3\right). Multiply \frac{-2a-3}{3\left(a-3\right)\left(a+3\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(a-3\right)} times \frac{3\left(a+3\right)}{3\left(a+3\right)}.
\frac{2\left(-2a-3\right)+3\left(a+3\right)}{6\left(a-3\right)\left(a+3\right)}
Since \frac{2\left(-2a-3\right)}{6\left(a-3\right)\left(a+3\right)} and \frac{3\left(a+3\right)}{6\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{-4a-6+3a+9}{6\left(a-3\right)\left(a+3\right)}
Do the multiplications in 2\left(-2a-3\right)+3\left(a+3\right).
\frac{-a+3}{6\left(a-3\right)\left(a+3\right)}
Combine like terms in -4a-6+3a+9.
\frac{-\left(a-3\right)}{6\left(a-3\right)\left(a+3\right)}
Extract the negative sign in -a+3.
\frac{-1}{6\left(a+3\right)}
Cancel out a-3 in both numerator and denominator.
\frac{-1}{6a+18}
Expand 6\left(a+3\right).