Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

-9-\frac{-1}{-8-1-i}
Subtract 1 from -8-i by subtracting corresponding real and imaginary parts.
-9-\frac{-1}{-9-i}
Subtract 1 from -8 to get -9.
-9-\frac{-\left(-9+i\right)}{\left(-9-i\right)\left(-9+i\right)}
Multiply both numerator and denominator of \frac{-1}{-9-i} by the complex conjugate of the denominator, -9+i.
-9-\frac{-\left(-9+i\right)}{\left(-9\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-\frac{-\left(-9+i\right)}{82}
By definition, i^{2} is -1. Calculate the denominator.
-9-\frac{9-i}{82}
Multiply -1 and -9+i to get 9-i.
-9+\left(-\frac{9}{82}+\frac{1}{82}i\right)
Divide 9-i by 82 to get \frac{9}{82}-\frac{1}{82}i.
-9-\frac{9}{82}+\frac{1}{82}i
Combine the real and imaginary parts in numbers -9 and -\frac{9}{82}+\frac{1}{82}i.
-\frac{747}{82}+\frac{1}{82}i
Add -9 to -\frac{9}{82}.
Re(-9-\frac{-1}{-8-1-i})
Subtract 1 from -8-i by subtracting corresponding real and imaginary parts.
Re(-9-\frac{-1}{-9-i})
Subtract 1 from -8 to get -9.
Re(-9-\frac{-\left(-9+i\right)}{\left(-9-i\right)\left(-9+i\right)})
Multiply both numerator and denominator of \frac{-1}{-9-i} by the complex conjugate of the denominator, -9+i.
Re(-9-\frac{-\left(-9+i\right)}{\left(-9\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-9-\frac{-\left(-9+i\right)}{82})
By definition, i^{2} is -1. Calculate the denominator.
Re(-9-\frac{9-i}{82})
Multiply -1 and -9+i to get 9-i.
Re(-9+\left(-\frac{9}{82}+\frac{1}{82}i\right))
Divide 9-i by 82 to get \frac{9}{82}-\frac{1}{82}i.
Re(-9-\frac{9}{82}+\frac{1}{82}i)
Combine the real and imaginary parts in numbers -9 and -\frac{9}{82}+\frac{1}{82}i.
Re(-\frac{747}{82}+\frac{1}{82}i)
Add -9 to -\frac{9}{82}.
-\frac{747}{82}
The real part of -\frac{747}{82}+\frac{1}{82}i is -\frac{747}{82}.