\frac { - 9 - ( - 1 } { - 8 - i - 1 }
Evaluate
-\frac{747}{82}+\frac{1}{82}i\approx -9.109756098+0.012195122i
Real Part
-\frac{747}{82} = -9\frac{9}{82} = -9.109756097560975
Share
Copied to clipboard
-9-\frac{-1}{-8-1-i}
Subtract 1 from -8-i by subtracting corresponding real and imaginary parts.
-9-\frac{-1}{-9-i}
Subtract 1 from -8 to get -9.
-9-\frac{-\left(-9+i\right)}{\left(-9-i\right)\left(-9+i\right)}
Multiply both numerator and denominator of \frac{-1}{-9-i} by the complex conjugate of the denominator, -9+i.
-9-\frac{-\left(-9+i\right)}{\left(-9\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-\frac{-\left(-9+i\right)}{82}
By definition, i^{2} is -1. Calculate the denominator.
-9-\frac{9-i}{82}
Multiply -1 and -9+i to get 9-i.
-9+\left(-\frac{9}{82}+\frac{1}{82}i\right)
Divide 9-i by 82 to get \frac{9}{82}-\frac{1}{82}i.
-9-\frac{9}{82}+\frac{1}{82}i
Combine the real and imaginary parts in numbers -9 and -\frac{9}{82}+\frac{1}{82}i.
-\frac{747}{82}+\frac{1}{82}i
Add -9 to -\frac{9}{82}.
Re(-9-\frac{-1}{-8-1-i})
Subtract 1 from -8-i by subtracting corresponding real and imaginary parts.
Re(-9-\frac{-1}{-9-i})
Subtract 1 from -8 to get -9.
Re(-9-\frac{-\left(-9+i\right)}{\left(-9-i\right)\left(-9+i\right)})
Multiply both numerator and denominator of \frac{-1}{-9-i} by the complex conjugate of the denominator, -9+i.
Re(-9-\frac{-\left(-9+i\right)}{\left(-9\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(-9-\frac{-\left(-9+i\right)}{82})
By definition, i^{2} is -1. Calculate the denominator.
Re(-9-\frac{9-i}{82})
Multiply -1 and -9+i to get 9-i.
Re(-9+\left(-\frac{9}{82}+\frac{1}{82}i\right))
Divide 9-i by 82 to get \frac{9}{82}-\frac{1}{82}i.
Re(-9-\frac{9}{82}+\frac{1}{82}i)
Combine the real and imaginary parts in numbers -9 and -\frac{9}{82}+\frac{1}{82}i.
Re(-\frac{747}{82}+\frac{1}{82}i)
Add -9 to -\frac{9}{82}.
-\frac{747}{82}
The real part of -\frac{747}{82}+\frac{1}{82}i is -\frac{747}{82}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}