Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-1}{\sqrt{9^{2}+\left(-4\right)^{2}}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Add -9 and 8 to get -1.
\frac{-1}{\sqrt{81+\left(-4\right)^{2}}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Calculate 9 to the power of 2 and get 81.
\frac{-1}{\sqrt{81+16}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Calculate -4 to the power of 2 and get 16.
\frac{-1}{\sqrt{97}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Add 81 and 16 to get 97.
\frac{-1}{\sqrt{97}\sqrt{1+\left(-2\right)^{2}}}
Calculate -1 to the power of 2 and get 1.
\frac{-1}{\sqrt{97}\sqrt{1+4}}
Calculate -2 to the power of 2 and get 4.
\frac{-1}{\sqrt{97}\sqrt{5}}
Add 1 and 4 to get 5.
\frac{-1}{\sqrt{485}}
To multiply \sqrt{97} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\sqrt{485}}{\left(\sqrt{485}\right)^{2}}
Rationalize the denominator of \frac{-1}{\sqrt{485}} by multiplying numerator and denominator by \sqrt{485}.
\frac{-\sqrt{485}}{485}
The square of \sqrt{485} is 485.