\frac { - 9 + 8 } { ( \sqrt { ( 9 ) ^ { 2 } + ( - 4 ) ^ { 2 } } ) ( \sqrt { ( - 1 ) ^ { 2 } + ( - 2 ) ^ { 2 } ) } }
Evaluate
-\frac{\sqrt{485}}{485}\approx -0.045407661
Share
Copied to clipboard
\frac{-1}{\sqrt{9^{2}+\left(-4\right)^{2}}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Add -9 and 8 to get -1.
\frac{-1}{\sqrt{81+\left(-4\right)^{2}}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Calculate 9 to the power of 2 and get 81.
\frac{-1}{\sqrt{81+16}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Calculate -4 to the power of 2 and get 16.
\frac{-1}{\sqrt{97}\sqrt{\left(-1\right)^{2}+\left(-2\right)^{2}}}
Add 81 and 16 to get 97.
\frac{-1}{\sqrt{97}\sqrt{1+\left(-2\right)^{2}}}
Calculate -1 to the power of 2 and get 1.
\frac{-1}{\sqrt{97}\sqrt{1+4}}
Calculate -2 to the power of 2 and get 4.
\frac{-1}{\sqrt{97}\sqrt{5}}
Add 1 and 4 to get 5.
\frac{-1}{\sqrt{485}}
To multiply \sqrt{97} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\sqrt{485}}{\left(\sqrt{485}\right)^{2}}
Rationalize the denominator of \frac{-1}{\sqrt{485}} by multiplying numerator and denominator by \sqrt{485}.
\frac{-\sqrt{485}}{485}
The square of \sqrt{485} is 485.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}