Solve for x
x=-\frac{17}{24}\approx -0.708333333
Graph
Share
Copied to clipboard
-\left(17+8x\right)^{2}\left(-8\right)=x\left(8x-17\right)\times 64
Variable x cannot be equal to any of the values -\frac{17}{8},0,\frac{17}{8} since division by zero is not defined. Multiply both sides of the equation by x\left(8x-17\right)\left(8x+17\right)^{2}, the least common multiple of \left(17-8x\right)x,\left(8x+17\right)^{2}.
-\left(289+272x+64x^{2}\right)\left(-8\right)=x\left(8x-17\right)\times 64
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(17+8x\right)^{2}.
\left(-289-272x-64x^{2}\right)\left(-8\right)=x\left(8x-17\right)\times 64
To find the opposite of 289+272x+64x^{2}, find the opposite of each term.
2312+2176x+512x^{2}=x\left(8x-17\right)\times 64
Use the distributive property to multiply -289-272x-64x^{2} by -8.
2312+2176x+512x^{2}=\left(8x^{2}-17x\right)\times 64
Use the distributive property to multiply x by 8x-17.
2312+2176x+512x^{2}=512x^{2}-1088x
Use the distributive property to multiply 8x^{2}-17x by 64.
2312+2176x+512x^{2}-512x^{2}=-1088x
Subtract 512x^{2} from both sides.
2312+2176x=-1088x
Combine 512x^{2} and -512x^{2} to get 0.
2312+2176x+1088x=0
Add 1088x to both sides.
2312+3264x=0
Combine 2176x and 1088x to get 3264x.
3264x=-2312
Subtract 2312 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-2312}{3264}
Divide both sides by 3264.
x=-\frac{17}{24}
Reduce the fraction \frac{-2312}{3264} to lowest terms by extracting and canceling out 136.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}