Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-8+24i\right)\left(209-96i\right)}{\left(209+96i\right)\left(209-96i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 209-96i.
\frac{\left(-8+24i\right)\left(209-96i\right)}{209^{2}-96^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-8+24i\right)\left(209-96i\right)}{52897}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)i^{2}}{52897}
Multiply complex numbers -8+24i and 209-96i like you multiply binomials.
\frac{-8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)\left(-1\right)}{52897}
By definition, i^{2} is -1.
\frac{-1672+768i+5016i+2304}{52897}
Do the multiplications in -8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)\left(-1\right).
\frac{-1672+2304+\left(768+5016\right)i}{52897}
Combine the real and imaginary parts in -1672+768i+5016i+2304.
\frac{632+5784i}{52897}
Do the additions in -1672+2304+\left(768+5016\right)i.
\frac{632}{52897}+\frac{5784}{52897}i
Divide 632+5784i by 52897 to get \frac{632}{52897}+\frac{5784}{52897}i.
Re(\frac{\left(-8+24i\right)\left(209-96i\right)}{\left(209+96i\right)\left(209-96i\right)})
Multiply both numerator and denominator of \frac{-8+24i}{209+96i} by the complex conjugate of the denominator, 209-96i.
Re(\frac{\left(-8+24i\right)\left(209-96i\right)}{209^{2}-96^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-8+24i\right)\left(209-96i\right)}{52897})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)i^{2}}{52897})
Multiply complex numbers -8+24i and 209-96i like you multiply binomials.
Re(\frac{-8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)\left(-1\right)}{52897})
By definition, i^{2} is -1.
Re(\frac{-1672+768i+5016i+2304}{52897})
Do the multiplications in -8\times 209-8\times \left(-96i\right)+24i\times 209+24\left(-96\right)\left(-1\right).
Re(\frac{-1672+2304+\left(768+5016\right)i}{52897})
Combine the real and imaginary parts in -1672+768i+5016i+2304.
Re(\frac{632+5784i}{52897})
Do the additions in -1672+2304+\left(768+5016\right)i.
Re(\frac{632}{52897}+\frac{5784}{52897}i)
Divide 632+5784i by 52897 to get \frac{632}{52897}+\frac{5784}{52897}i.
\frac{632}{52897}
The real part of \frac{632}{52897}+\frac{5784}{52897}i is \frac{632}{52897}.