Evaluate
-\frac{1}{15}\approx -0.066666667
Factor
-\frac{1}{15} = -0.06666666666666667
Share
Copied to clipboard
-\frac{7}{8}+\frac{1}{2}-\left(-\frac{3}{8}-\left(\frac{3}{5}-\frac{2}{3}\right)\right)
Fraction \frac{-7}{8} can be rewritten as -\frac{7}{8} by extracting the negative sign.
-\frac{7}{8}+\frac{4}{8}-\left(-\frac{3}{8}-\left(\frac{3}{5}-\frac{2}{3}\right)\right)
Least common multiple of 8 and 2 is 8. Convert -\frac{7}{8} and \frac{1}{2} to fractions with denominator 8.
\frac{-7+4}{8}-\left(-\frac{3}{8}-\left(\frac{3}{5}-\frac{2}{3}\right)\right)
Since -\frac{7}{8} and \frac{4}{8} have the same denominator, add them by adding their numerators.
-\frac{3}{8}-\left(-\frac{3}{8}-\left(\frac{3}{5}-\frac{2}{3}\right)\right)
Add -7 and 4 to get -3.
-\frac{3}{8}-\left(-\frac{3}{8}-\left(\frac{9}{15}-\frac{10}{15}\right)\right)
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{2}{3} to fractions with denominator 15.
-\frac{3}{8}-\left(-\frac{3}{8}-\frac{9-10}{15}\right)
Since \frac{9}{15} and \frac{10}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{8}-\left(-\frac{3}{8}-\left(-\frac{1}{15}\right)\right)
Subtract 10 from 9 to get -1.
-\frac{3}{8}-\left(-\frac{3}{8}+\frac{1}{15}\right)
The opposite of -\frac{1}{15} is \frac{1}{15}.
-\frac{3}{8}-\left(-\frac{45}{120}+\frac{8}{120}\right)
Least common multiple of 8 and 15 is 120. Convert -\frac{3}{8} and \frac{1}{15} to fractions with denominator 120.
-\frac{3}{8}-\frac{-45+8}{120}
Since -\frac{45}{120} and \frac{8}{120} have the same denominator, add them by adding their numerators.
-\frac{3}{8}-\left(-\frac{37}{120}\right)
Add -45 and 8 to get -37.
-\frac{3}{8}+\frac{37}{120}
The opposite of -\frac{37}{120} is \frac{37}{120}.
-\frac{45}{120}+\frac{37}{120}
Least common multiple of 8 and 120 is 120. Convert -\frac{3}{8} and \frac{37}{120} to fractions with denominator 120.
\frac{-45+37}{120}
Since -\frac{45}{120} and \frac{37}{120} have the same denominator, add them by adding their numerators.
\frac{-8}{120}
Add -45 and 37 to get -8.
-\frac{1}{15}
Reduce the fraction \frac{-8}{120} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}