Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-6x^{8}\right)^{1}\times \frac{1}{3x^{3}}
Use the rules of exponents to simplify the expression.
\left(-6\right)^{1}\left(x^{8}\right)^{1}\times \frac{1}{3}\times \frac{1}{x^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-6\right)^{1}\times \frac{1}{3}\left(x^{8}\right)^{1}\times \frac{1}{x^{3}}
Use the Commutative Property of Multiplication.
\left(-6\right)^{1}\times \frac{1}{3}x^{8}x^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-6\right)^{1}\times \frac{1}{3}x^{8}x^{-3}
Multiply 3 times -1.
\left(-6\right)^{1}\times \frac{1}{3}x^{8-3}
To multiply powers of the same base, add their exponents.
\left(-6\right)^{1}\times \frac{1}{3}x^{5}
Add the exponents 8 and -3.
-6\times \frac{1}{3}x^{5}
Raise -6 to the power 1.
-2x^{5}
Multiply -6 times \frac{1}{3}.
\frac{\left(-6\right)^{1}x^{8}}{3^{1}x^{3}}
Use the rules of exponents to simplify the expression.
\frac{\left(-6\right)^{1}x^{8-3}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-6\right)^{1}x^{5}}{3^{1}}
Subtract 3 from 8.
-2x^{5}
Divide -6 by 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{6}{3}\right)x^{8-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{5})
Do the arithmetic.
5\left(-2\right)x^{5-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-10x^{4}
Do the arithmetic.