Evaluate
\frac{x\left(x-36y\right)}{6y}
Expand
\frac{x^{2}}{6y}-6x
Share
Copied to clipboard
\frac{-6x^{-1}+6^{-1}y^{-1}}{x^{-2}}
Expand \left(6y\right)^{-1}.
\frac{-6x^{-1}+\frac{1}{6}y^{-1}}{x^{-2}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\frac{1}{6}\left(-36+\frac{1}{y}x\right)\times \frac{1}{x}}{x^{-2}}
Factor the expressions that are not already factored.
\frac{1}{6}\left(-36+\frac{1}{y}x\right)x^{1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{6}\times \frac{1}{y}x^{2}-6x
Expand the expression.
\frac{1}{6y}x^{2}-6x
Multiply \frac{1}{6} times \frac{1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}}{6y}-6x
Express \frac{1}{6y}x^{2} as a single fraction.
\frac{x^{2}}{6y}+\frac{-6x\times 6y}{6y}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x times \frac{6y}{6y}.
\frac{x^{2}-6x\times 6y}{6y}
Since \frac{x^{2}}{6y} and \frac{-6x\times 6y}{6y} have the same denominator, add them by adding their numerators.
\frac{x^{2}-36xy}{6y}
Do the multiplications in x^{2}-6x\times 6y.
\frac{-6x^{-1}+6^{-1}y^{-1}}{x^{-2}}
Expand \left(6y\right)^{-1}.
\frac{-6x^{-1}+\frac{1}{6}y^{-1}}{x^{-2}}
Calculate 6 to the power of -1 and get \frac{1}{6}.
\frac{\frac{1}{6}\left(-36+\frac{1}{y}x\right)\times \frac{1}{x}}{x^{-2}}
Factor the expressions that are not already factored.
\frac{1}{6}\left(-36+\frac{1}{y}x\right)x^{1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{6}\times \frac{1}{y}x^{2}-6x
Expand the expression.
\frac{1}{6y}x^{2}-6x
Multiply \frac{1}{6} times \frac{1}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}}{6y}-6x
Express \frac{1}{6y}x^{2} as a single fraction.
\frac{x^{2}}{6y}+\frac{-6x\times 6y}{6y}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6x times \frac{6y}{6y}.
\frac{x^{2}-6x\times 6y}{6y}
Since \frac{x^{2}}{6y} and \frac{-6x\times 6y}{6y} have the same denominator, add them by adding their numerators.
\frac{x^{2}-36xy}{6y}
Do the multiplications in x^{2}-6x\times 6y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}