Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-6-17i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+3i.
\frac{\left(-6-17i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-6-17i\right)\left(2+3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3i^{2}}{13}
Multiply complex numbers -6-17i and 2+3i like you multiply binomials.
\frac{-6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{-12-18i-34i+51}{13}
Do the multiplications in -6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3\left(-1\right).
\frac{-12+51+\left(-18-34\right)i}{13}
Combine the real and imaginary parts in -12-18i-34i+51.
\frac{39-52i}{13}
Do the additions in -12+51+\left(-18-34\right)i.
3-4i
Divide 39-52i by 13 to get 3-4i.
Re(\frac{\left(-6-17i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)})
Multiply both numerator and denominator of \frac{-6-17i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{\left(-6-17i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-6-17i\right)\left(2+3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3i^{2}}{13})
Multiply complex numbers -6-17i and 2+3i like you multiply binomials.
Re(\frac{-6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{-12-18i-34i+51}{13})
Do the multiplications in -6\times 2-6\times \left(3i\right)-17i\times 2-17\times 3\left(-1\right).
Re(\frac{-12+51+\left(-18-34\right)i}{13})
Combine the real and imaginary parts in -12-18i-34i+51.
Re(\frac{39-52i}{13})
Do the additions in -12+51+\left(-18-34\right)i.
Re(3-4i)
Divide 39-52i by 13 to get 3-4i.
3
The real part of 3-4i is 3.