Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{-5-n}{3}\times \frac{n-0}{1+1}=-1
Subtract 1 from 4 to get 3.
\frac{-5-n}{3}\times \frac{n-0}{2}=-1
Add 1 and 1 to get 2.
\frac{\left(-5-n\right)\left(n-0\right)}{3\times 2}=-1
Multiply \frac{-5-n}{3} times \frac{n-0}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-5-n\right)\left(n-0\right)}{6}=-1
Multiply 3 and 2 to get 6.
\frac{\left(-5-n\right)\left(n-0\right)}{6}+1=0
Add 1 to both sides.
\frac{-5\left(n-0\right)-n\left(n-0\right)}{6}+1=0
Use the distributive property to multiply -5-n by n-0.
-5\left(n-0\right)-n\left(n-0\right)+6=0
Multiply both sides of the equation by 6.
-nn-5n+6=0
Reorder the terms.
-n^{2}-5n+6=0
Multiply n and n to get n^{2}.
n=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -5.
n=\frac{-\left(-5\right)±\sqrt{25+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-\left(-5\right)±\sqrt{25+24}}{2\left(-1\right)}
Multiply 4 times 6.
n=\frac{-\left(-5\right)±\sqrt{49}}{2\left(-1\right)}
Add 25 to 24.
n=\frac{-\left(-5\right)±7}{2\left(-1\right)}
Take the square root of 49.
n=\frac{5±7}{2\left(-1\right)}
The opposite of -5 is 5.
n=\frac{5±7}{-2}
Multiply 2 times -1.
n=\frac{12}{-2}
Now solve the equation n=\frac{5±7}{-2} when ± is plus. Add 5 to 7.
n=-6
Divide 12 by -2.
n=-\frac{2}{-2}
Now solve the equation n=\frac{5±7}{-2} when ± is minus. Subtract 7 from 5.
n=1
Divide -2 by -2.
n=-6 n=1
The equation is now solved.
\frac{-5-n}{3}\times \frac{n-0}{1+1}=-1
Subtract 1 from 4 to get 3.
\frac{-5-n}{3}\times \frac{n-0}{2}=-1
Add 1 and 1 to get 2.
\frac{\left(-5-n\right)\left(n-0\right)}{3\times 2}=-1
Multiply \frac{-5-n}{3} times \frac{n-0}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-5-n\right)\left(n-0\right)}{6}=-1
Multiply 3 and 2 to get 6.
\left(-5-n\right)\left(n-0\right)=-6
Multiply both sides by 6.
n\left(-n-5\right)=-6
Reorder the terms.
-n^{2}-5n=-6
Use the distributive property to multiply n by -n-5.
\frac{-n^{2}-5n}{-1}=-\frac{6}{-1}
Divide both sides by -1.
n^{2}+\left(-\frac{5}{-1}\right)n=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
n^{2}+5n=-\frac{6}{-1}
Divide -5 by -1.
n^{2}+5n=6
Divide -6 by -1.
n^{2}+5n+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+5n+\frac{25}{4}=6+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}+5n+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(n+\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor n^{2}+5n+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
n+\frac{5}{2}=\frac{7}{2} n+\frac{5}{2}=-\frac{7}{2}
Simplify.
n=1 n=-6
Subtract \frac{5}{2} from both sides of the equation.