Evaluate
-\frac{203}{240}\approx -0.845833333
Factor
-\frac{203}{240} = -0.8458333333333333
Share
Copied to clipboard
-\frac{5}{16}+\frac{7}{20}+\frac{-7}{12}+\frac{-3}{10}
Fraction \frac{-5}{16} can be rewritten as -\frac{5}{16} by extracting the negative sign.
-\frac{25}{80}+\frac{28}{80}+\frac{-7}{12}+\frac{-3}{10}
Least common multiple of 16 and 20 is 80. Convert -\frac{5}{16} and \frac{7}{20} to fractions with denominator 80.
\frac{-25+28}{80}+\frac{-7}{12}+\frac{-3}{10}
Since -\frac{25}{80} and \frac{28}{80} have the same denominator, add them by adding their numerators.
\frac{3}{80}+\frac{-7}{12}+\frac{-3}{10}
Add -25 and 28 to get 3.
\frac{3}{80}-\frac{7}{12}+\frac{-3}{10}
Fraction \frac{-7}{12} can be rewritten as -\frac{7}{12} by extracting the negative sign.
\frac{9}{240}-\frac{140}{240}+\frac{-3}{10}
Least common multiple of 80 and 12 is 240. Convert \frac{3}{80} and \frac{7}{12} to fractions with denominator 240.
\frac{9-140}{240}+\frac{-3}{10}
Since \frac{9}{240} and \frac{140}{240} have the same denominator, subtract them by subtracting their numerators.
-\frac{131}{240}+\frac{-3}{10}
Subtract 140 from 9 to get -131.
-\frac{131}{240}-\frac{3}{10}
Fraction \frac{-3}{10} can be rewritten as -\frac{3}{10} by extracting the negative sign.
-\frac{131}{240}-\frac{72}{240}
Least common multiple of 240 and 10 is 240. Convert -\frac{131}{240} and \frac{3}{10} to fractions with denominator 240.
\frac{-131-72}{240}
Since -\frac{131}{240} and \frac{72}{240} have the same denominator, subtract them by subtracting their numerators.
-\frac{203}{240}
Subtract 72 from -131 to get -203.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}