Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-42\left(1-\sqrt{15}\right)}{\left(1+\sqrt{15}\right)\left(1-\sqrt{15}\right)}
Rationalize the denominator of \frac{-42}{1+\sqrt{15}} by multiplying numerator and denominator by 1-\sqrt{15}.
\frac{-42\left(1-\sqrt{15}\right)}{1^{2}-\left(\sqrt{15}\right)^{2}}
Consider \left(1+\sqrt{15}\right)\left(1-\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-42\left(1-\sqrt{15}\right)}{1-15}
Square 1. Square \sqrt{15}.
\frac{-42\left(1-\sqrt{15}\right)}{-14}
Subtract 15 from 1 to get -14.
3\left(1-\sqrt{15}\right)
Divide -42\left(1-\sqrt{15}\right) by -14 to get 3\left(1-\sqrt{15}\right).
3-3\sqrt{15}
Use the distributive property to multiply 3 by 1-\sqrt{15}.