Evaluate
-\frac{x^{2}+y}{a}
Expand
-\frac{x^{2}+y}{a}
Share
Copied to clipboard
\frac{-4x^{2}-4y}{\left(\frac{a}{3}+\frac{3\times 3}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{-4x^{2}-4y}{\left(\frac{a+3\times 3}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
Since \frac{a}{3} and \frac{3\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-4y}{\left(\frac{a+9}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
Do the multiplications in a+3\times 3.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a}{3}-3\right)^{2}}
To raise \frac{a+9}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a}{3}-\frac{3\times 3}{3}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a-3\times 3}{3}\right)^{2}}
Since \frac{a}{3} and \frac{3\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a-9}{3}\right)^{2}}
Do the multiplications in a-3\times 3.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\frac{\left(a-9\right)^{2}}{3^{2}}}
To raise \frac{a-9}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\frac{\left(a-9\right)^{2}}{9}}
Calculate 3 to the power of 2 and get 9.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{9}-\frac{\left(a-9\right)^{2}}{9}}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}-\left(a-9\right)^{2}}{9}}
Since \frac{\left(a+9\right)^{2}}{9} and \frac{\left(a-9\right)^{2}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}-4y}{\frac{a^{2}+18a+81-a^{2}+18a-81}{9}}
Do the multiplications in \left(a+9\right)^{2}-\left(a-9\right)^{2}.
\frac{-4x^{2}-4y}{\frac{36a}{9}}
Combine like terms in a^{2}+18a+81-a^{2}+18a-81.
\frac{\left(-4x^{2}-4y\right)\times 9}{36a}
Divide -4x^{2}-4y by \frac{36a}{9} by multiplying -4x^{2}-4y by the reciprocal of \frac{36a}{9}.
\frac{-4x^{2}-4y}{4a}
Cancel out 9 in both numerator and denominator.
\frac{4\left(-x^{2}-y\right)}{4a}
Factor the expressions that are not already factored.
\frac{-x^{2}-y}{a}
Cancel out 4 in both numerator and denominator.
\frac{-4x^{2}-4y}{\left(\frac{a}{3}+\frac{3\times 3}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{-4x^{2}-4y}{\left(\frac{a+3\times 3}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
Since \frac{a}{3} and \frac{3\times 3}{3} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-4y}{\left(\frac{a+9}{3}\right)^{2}-\left(\frac{a}{3}-3\right)^{2}}
Do the multiplications in a+3\times 3.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a}{3}-3\right)^{2}}
To raise \frac{a+9}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a}{3}-\frac{3\times 3}{3}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a-3\times 3}{3}\right)^{2}}
Since \frac{a}{3} and \frac{3\times 3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\left(\frac{a-9}{3}\right)^{2}}
Do the multiplications in a-3\times 3.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\frac{\left(a-9\right)^{2}}{3^{2}}}
To raise \frac{a-9}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{3^{2}}-\frac{\left(a-9\right)^{2}}{9}}
Calculate 3 to the power of 2 and get 9.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}}{9}-\frac{\left(a-9\right)^{2}}{9}}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
\frac{-4x^{2}-4y}{\frac{\left(a+9\right)^{2}-\left(a-9\right)^{2}}{9}}
Since \frac{\left(a+9\right)^{2}}{9} and \frac{\left(a-9\right)^{2}}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}-4y}{\frac{a^{2}+18a+81-a^{2}+18a-81}{9}}
Do the multiplications in \left(a+9\right)^{2}-\left(a-9\right)^{2}.
\frac{-4x^{2}-4y}{\frac{36a}{9}}
Combine like terms in a^{2}+18a+81-a^{2}+18a-81.
\frac{\left(-4x^{2}-4y\right)\times 9}{36a}
Divide -4x^{2}-4y by \frac{36a}{9} by multiplying -4x^{2}-4y by the reciprocal of \frac{36a}{9}.
\frac{-4x^{2}-4y}{4a}
Cancel out 9 in both numerator and denominator.
\frac{4\left(-x^{2}-y\right)}{4a}
Factor the expressions that are not already factored.
\frac{-x^{2}-y}{a}
Cancel out 4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}