Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4i\left(-5+4i\right)}{\left(-5-4i\right)\left(-5+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -5+4i.
\frac{-4i\left(-5+4i\right)}{\left(-5\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4i\left(-5+4i\right)}{41}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4i\left(-5\right)-4\times 4i^{2}}{41}
Multiply -4i times -5+4i.
\frac{-4i\left(-5\right)-4\times 4\left(-1\right)}{41}
By definition, i^{2} is -1.
\frac{16+20i}{41}
Do the multiplications in -4i\left(-5\right)-4\times 4\left(-1\right). Reorder the terms.
\frac{16}{41}+\frac{20}{41}i
Divide 16+20i by 41 to get \frac{16}{41}+\frac{20}{41}i.
Re(\frac{-4i\left(-5+4i\right)}{\left(-5-4i\right)\left(-5+4i\right)})
Multiply both numerator and denominator of \frac{-4i}{-5-4i} by the complex conjugate of the denominator, -5+4i.
Re(\frac{-4i\left(-5+4i\right)}{\left(-5\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-4i\left(-5+4i\right)}{41})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4i\left(-5\right)-4\times 4i^{2}}{41})
Multiply -4i times -5+4i.
Re(\frac{-4i\left(-5\right)-4\times 4\left(-1\right)}{41})
By definition, i^{2} is -1.
Re(\frac{16+20i}{41})
Do the multiplications in -4i\left(-5\right)-4\times 4\left(-1\right). Reorder the terms.
Re(\frac{16}{41}+\frac{20}{41}i)
Divide 16+20i by 41 to get \frac{16}{41}+\frac{20}{41}i.
\frac{16}{41}
The real part of \frac{16}{41}+\frac{20}{41}i is \frac{16}{41}.